
- •Глава 1. «Строение материалов»
- •Раздел 1. Строение металлов
- •1.1. Атомно-кристаллическое строение
- •1.2. Дефекты строения кристаллических тел
- •1.3. Кристаллизация металлов
- •1.4. Формирование структуры деформированных металлов
- •Раздел 2. Строение сплавов
- •2.1. Фазы и структура металлических сплавов
- •2.2. Диаграммы состояния (фазового равновесия сплавов)
- •2.3. Диаграмма состояния системы железо – углерод
- •Раздел 3. Строение полимеров
- •3.1. Молекулярная структура полимеров
- •Глава 2. Модуль 2. «Свойства материалов и методы их определения»
- •Раздел 1. Свойства материалов
- •Критерии выбора материала
- •1.2. Механические свойства
- •1.3. Испытания долговечности
- •1.4. Изнашивание металлов
- •1.5. Физико-химические свойства материалов
- •Раздел 2. Методы контроля структуры и свойств материалов
- •2.1. Металлографические методы испытаний
- •2.2. Неразрушающие методы контроля
- •Глава 3. Модуль 3. «Термическая обработка»
- •Раздел 1. Основы теории термической обработки
- •Общие положения и определения
- •Классификация видов термической обработки стали
- •Теория термической обработки
- •Раздел 2. Технология термической обработки
- •2.1. Отжиг
- •2.2. Нормализация
- •2.3. Закалка
- •2.4. Отпуск
- •2.5. Термомеханическая обработка стали
- •Раздел 3. Поверхностное упрочнение металлов и сплавов
- •3.1. Упрочнение поверхности методом пластического деформирования
- •3.2. Поверхностная закалка
- •3.3. Химико-термическая обработка
- •3.4. Циркуляционный метод химико-термической обработки
- •Глава 4. Модуль 4. «Материалы, применяемые в технике»
- •Раздел 1. Промышленные стали и сплавы
- •Общая классификация и маркировка сталей
- •1.2. Маркировка сталей по евронормам
- •1.3. Инструментальные стали и сплавы
- •1.4. Коррозионностойкие стали
- •1.5. Жаростойкие и жаропрочные стали
- •1.6. Хладостойкие стали
- •1.7. Порошковые материалы
- •1.8. Чугуны
- •Раздел 2. Цветные металлы и сплавы
- •2.1. Медь и ее сплавы
- •2.2. Алюминий и его сплавы
- •2.3. Титан и его сплавы
- •2.4. Никель и его сплавы
- •Раздел 3. Неметаллические материалы
- •3.1. Пластические массы
- •3.2. Резины
- •Раздел 4. Композиционные материалы
- •4.1. Общая характеристика
- •Раздел 5. Материалы с особыми физическими свойствами
- •5.1. Магнитные материалы
- •5.2. Проводниковые материалы
- •5.3. Сплавы с особыми тепловыми и упругими свойствами
- •Приложение
- •Продолжение табл. 4
- •Продолжение табл. 4
- •Продолжение табл. 5
- •Продолжение табл. 5
- •Продолжение табл. 5
- •Перечень госТов на стали и сплавы
- •1. Сталь
- •2. Чугун
- •Глава 1. Модуль 1. «Строение материалов»……………….……13
1.5. Физико-химические свойства материалов
Наиболее важными физическими свойствами, значения которых учитывают при практическом использовании материалов, являются плотность, теплоемкость, теплопро-водность, тепловое расширение, электропроводность. Особые магнитные свойства железа, никеля, кобальта и их сплавов, а также ферритов, выделили их в группы материалов исключительной ценности - ферро- и ферримагнетики.
Физические свойства определяются типом межатомной связи и химическим составом материалов, температурой и давлением. Для большинства процессов обработки материалов давления не превышают 500 МПа. Такие давления практически не влияют на значения физических свойств. Различают зависимые и независимые от структуры материала физические свойства. Значения последних определяются только химическим составом материала и температурой.
При нагреве физические свойства изменяются нелинейно. Приближенно они характеризуются соответствующими температурными коэффициентами. Например, удельное электросопротивление ρ при нагреве на ∆Т определяется зависимостью:
ρт = ρ0 ∙ (1 + β∙∆Т),
где ρ0, ρт - удельное электросопротивление на нижней и верхней границе интервала температур ∆Т; β - температурный коэффициент. Так как значения температурных коэффициентов малы, то аналогичные линейные зависимости свойств от температуры применимы в широких интервалах температур с достаточной для практических целей точностью.
Плотность существенно зависит от типа межатомной связи. Максимальную плотность имеют материалы с ненаправленными металлическими или ионными связями. Направленная ковалентная связь предопределяет менее плотное расположение атомов.
У металлов плотность изменяется от 22,5 г/см3 у осмия до 0,534 г/см3 у лития. Легирование сплава более тяжелыми элементами, чем основа, увеличивает, а более легкими — уменьшает его плотность. Масштабы легирования ограничены техническими и экономическими соображениями. Плотность основы является определяющей для группы сплавов разного химического состава на основе данного металла.
Пористость уменьшает плотность. Для порошковых сплавов и других пористых материалов она является одним из критериев качества. Пористость оценивают по фактической плотности материала и определяют методом гидростатического взвешивания или другими способами. Уменьшение расхода конструкционных материалов и снижение массы металлоконструкций и машин является тенденцией современного машиностроения. Чем меньше плотность материалов, тем ниже динамические нагрузки на детали и меньше расход энергии на эксплуатацию машины.
Преимущество легких материалов над тяжелыми становится более наглядным при сравнении материалов по их удельной прочности σB / γ∙g и удельной жесткости E / γ∙g. По этим характеристикам первое место занимают композиционные материалы, а сплавы алюминия (дуралюмины) не уступают более прочным легированным конструкционным сталям.
При нагреве плотность материалов уменьшается из-за теплового расширения.
Тепловое расширение - это изменение объема (линейных размеров) тела при повышении температуры при постоянном давлении. В основе теплового расширения лежит несим-метричность тепловых колебаний атомов, поэтому при повышении температуры увеличиваются средние межатомные расстояния.
Для практических целей пользуются средними значениями коэффициентов объемного и линейного αℓ расширения:
αv
=
;
αℓ
=
,
где V,ℓ - объем и длина образца соответственно; ∆V, ∆ℓ - изменения объема и длины при повышении температуры на ∆T.
В общем случае:
β = α1 + α2 + α3,
где α1; α2 и α3 - соответственно коэффициенты линейного расширения по трем осям симметрии кристалла .
Различие значений коэффициента теплового расширения двух соединяемых материалов является причиной появления значительных термических напряжений. Согласование значений α при соединении стекол с металлами необходимо при впаивании металлических проводников в стекла. Получаемые спаи отличаются простой конструкции и надежностью в эксплуатации.
Тепловое расширение учитывают при расчете прессовых посадок, сварке и пайке разнородных материалов, изготовления аппаратуры из двухслойных сталей и ее эксплуатации, при выборе клеев и эксплуатации машин и приборов в изменяющихся температурных полях.
Теплопроводностью называется перенос тепловой энергии в твердых телах, жидкостях и газах при макроскопической неподвижности частиц. Перенос теплоты происходит от более горячих частиц к холодным и подчиняется закону Фурье:
q = - λgradT,
где q - плотность теплового потока, Дж/м2∙с; λ - теплопроводность, Вт/(м∙К).
Теплопроводность зависит от типа межатомной связи, температуры, химического состава и структуры материала.
Механизм передачи теплоты в первую очередь определяется типом связи: в металлах теплоту переносят электроны; в материалах с ковалентным или ионным типом связи - фононы. Самым теплопроводным является алмаз. В полупроводниках при весьма незначительной концентрации носителей заряда теплопроводность осуществляется в основном фононами. Чем совершеннее кристаллы, тем выше их теплопроводность. Монокристаллы лучше проводят теплоту, чем поликристаллы, так как границы зерен и другие дефекты кристаллической структуры рассеивают фононы и увеличивают электросопротивление.
Чем больше примесей содержит металл, мельче зерна и больше искажена кристаллическая решетка, тем меньше теплопроводность. Легирование вносит искажение в кристаллические решетки твердых растворов и понижает теплопроводность по сравнению с чистым металлом - основой сплава. Структурные составляющие, представляющие дисперсные смеси нескольких фаз (эвтектики, эвтектоиды), снижают теплопроводность. Структуры с равномерным распределением частиц фаз имеют меньшую теплопроводность, чем основа сплава. Предельным видом подобной структуры является пористый материал. По сравнению с твердыми телами газы являются теплоизоляторами.
Теплопроводность пористых керамических и металлических материалов независимо от типа межатомной связи и можно оценить по формуле:
λ пор ≈ λ (1 - р),
где λ - теплопроводность беспористого материала, Вт/(м∙К); р - доля пор в объеме пористого материала.
Теплоемкость - это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость - количество энергии, поглощаемой единицей массы при нагреве на один градус. У большинства металлов теплоемкость составляет 300 - 400 Дж/(кг∙К) и более. Теплоемкость металлических материалов растет с повышением температуры.
Полимерные материалы, как правило, имеют удельную теплоемкость 1000 Дж/(кг ∙ К) и более.