
- •Александр Ивин Логика Предисловие
- •Глава 1 Задачи логики
- •1. Правильное рассуждение
- •2. Логическая форма
- •3. Дедукция и индукция
- •4. Интуитивная логика
- •5. Некоторые схемы правильных рассуждений
- •6. Традиционная и современная логика
- •7. Современная логика и другие науки
- •Глава 2 Слова и вещи
- •1. Язык как знаковая система
- •2. Основные функции языка
- •3. Логическая грамматика
- •Глава 3 Имена
- •1. Виды имён
- •2. Отношения между именами
- •3. Определение
- •4. Деление
- •Глава 4 Высказывания
- •1. Простые и сложные высказывания. Отрицание, конъюнкция, дизъюнкция
- •2. Условное высказывание, импликация, эквивалентность
- •3. Описательные и оценочные высказывания
- •4. Модальные высказывания
- •Глава 5 Ловушки языка
- •1. Тайная мудрость языка
- •2. Многозначность
- •3. Эгоцентрические слова
- •4. Неточные и неясные имена
- •5. Гипостазирование
- •6. Роли имён
- •Глава 6 о смысле бессмысленного
- •1. Осмысленное и бессмысленное
- •2. Абсурд
- •3. Синтаксические нарушения
- •4. Семантические нарушения
- •5. Крайние случаи бессмысленного
- •Бармаглот
- •6. Туманное и тёмное
- •Глава 7 Логика высказываний
- •1. Логический закон
- •2. Закон противоречия
- •3. Закон исключённого третьего
- •4. Логические законы тождества, двойного отрицания и другие Закон тожества
- •Закон двойного отрицания
- •Законы контрапозиции
- •Модус поненс
- •Модус толленс
- •Модус понендо толленс
- •Модус толлендо поненс
- •Законы де Моргана
- •Закон приведения к абсурду
- •Закон косвенного доказательства
- •Закон Клавия
- •Закон транзитивности
- •Законы ассоциативности и коммутативности
- •Закон Дунса Скотта
- •5. Логическое следование
- •6. Язык логики предикатов
- •Глава 8 Модальная логика
- •1. Логические модальности
- •2. Физические модальности
- •3. Логическое исследование ценностей
- •Глава 9 Логика категорических высказываний
- •1. Категорические высказывания
- •2. Логический квадрат
- •3. Категорический силлогизм
- •Глава 10 Доказательство и опровержение
- •1. Понятие доказательства и его структура
- •2. Прямое и косвенное доказательство
- •3. Виды косвенных доказательств
- •4. Опровержение
- •5. Ошибки в доказательстве
- •6. Софизмы
- •Глава 11 Индуктивные рассуждения
- •1. Индукция как вероятное рассуждение
- •2. Неполная индукция
- •3. Подтверждение следствий
- •4. Полная индукция и математическая индукция
- •5. Методы установления причинных связей
- •Единственное сходство
- •Единственное различие
- •Сходство и различие
- •Сопутствующие изменения
- •Остающаяся часть причины
- •6. Надёжность индукции
- •7. Аналогия
- •Аналогия свойств и аналогия отношений
- •Вероятный характер аналогии
- •Понимание по аналогии
- •Типичные ошибки
- •Глава 12 Проблема понимания
- •1. Структура понимания
- •2. Сильное понимание
- •3. Понимание поведения
- •4. Понимание природы
- •5. Понимание языковых выражений
- •6. Объяснение
- •Глава 13 Аргументация и логика
- •1. Теория аргументации
- •2. Обоснование
- •3. Эмпирическая аргументация
- •4. Факты как примеры и иллюстрации
- •5. Теоретическая аргументация
- •6. Контекстуальная аргументация
- •7. Обоснование и истина
- •8. Аргументация в поддержку оценок
- •Глава 14 Спор и его виды
- •1. Корректные и некорректные споры
- •2. Споры об истине и споры о ценностях
- •3. Четыре разновидности споров
- •4. Общие требования к спору
- •5. Победа в споре
- •Вместо заключения
- •Примечания
Закон транзитивности
Закон транзитивностив обычном языке можно передать так:когда верно, что если первое, то второе, и если второе, то третье, то верно также, что если первое, то третье.Например: «Если дело обстоит так, что с развитием медицины появляется больше возможностей защитить человека от болезней и с увеличением этих возможностей растёт средняя продолжительность его жизни, то верно, что с развитием медицины растёт средняя продолжительность жизни человека». Иначе говоря, если условием истинности первого является истинность второго и условием истинности второго – истинность третьего, то истинность последнего есть также условие истинности первого.
Символически данный закон представляется формулой:
((А→В)&(В→C)→(А→С),
если (если A, тоВ)и (еслиB, тоC), то (еслиA, тоC).
Законы ассоциативности и коммутативности
Законами ассоциативности называются логические законы, позволяющие по-разному группировать высказывания, соединяемые с помощью «и», «или» и др.
Операции сложения и умножения чисел в математике ассоциативны:
(а + в) + с = а + (в + с),
(а × в)×с = а×(в×с).
Ассоциативностью обладают также логическое сложение (дизъюнкция) и логическое умножение (конъюнкция). Символически соответствующие законы представляются так:
(AvB)v C ↔Av(Bv C),
(A & B)&C ↔ A&(B&C).
В силу законов ассоциативности в формулах, представляющих конъюнкцию более чем двух высказываний или их дизъюнкцию, можно опускать скобки.
Законами коммутативностиназывают логические законы, позволяющие менять местами высказывания, связанные «и», «или», «если и только если» и др. Эти законы аналогичны алгебраическим законам коммутативности для умножения, сложения и др.,
по которым результат умножения не зависит от порядка множителей, сложения – от порядка слагаемых и т.д.
Символически законы коммутативности для конъюнкции и дизъюнкции записываются так:
(А&В)↔(В&А),
AиBтогда и только тогда, когдаBиA;
(AvВ)↔(ВvА),
AилиB, если и только еслиBилиA.
Данные эквивалентности можно проиллюстрировать примерами: «Волга – самая длинная река в Европе и Волга впадает в Каспийское море в том и только том случае, если Волга впадает в Каспийское море и Волга является самой длинной рекой в Европе»; «Завтра будет дождь или будет снег, если и только если завтра будет снег или завтра будет дождь».
Существуют важные различия между употреблением слов «и» и «или» в повседневном языке и языке логики. В обычном языке этими словами соединяются два высказывания, связанные по содержанию. Нередко обычное «и» употребляется при перечислении, а обычное «или» предполагает, что мы не знаем, какое именно из соединяемых им двух высказываний истинно. В логике значения «и» и «или» упрощаются и делаются более независимыми от временной последовательности, от психологических факторов и т.п. «И» и «или» в логике коммутативны. Но «и» обычного языка, как правило, коммутативным не является. Скажем, утверждение «Он сломал ногу и попал в больницу» очевидно не равносильно высказыванию «Он попал в больницу и сломал ногу».
Закон Дунса Скотта
Закон,носящий имя средневекового логика и философа, монахаДунса Скотта,характеризует ложное высказывание. Смысл этого закона можно приблизительно передать так:из ложного утверждения вытекает какое угодно утверждение.Это звучит парадоксально: из того, что дважды два равно пяти, вовсе не вытекает, как кажется, что Луна сделана из зеленого сыра. Не все современные описания логического следования принимают эту его характеристику.
Известен анекдот об английском философе и логике Б.Расселе, доказавшем своему собеседнику на каком-то вечере, что из того, что два плюс два равно пяти, вытекает, что он, Рассел – римский папа. В доказательстве использовался закон Дунса Скотта.
Отнимем от обеих сторон равенства 2 + 2 = 5 по 3. Получим: 1 = 2. Если собеседник утверждает, что Рассел не является римским папой, то этот папа и Рассел – два разных лица. Но поскольку 1 = 2, папа и Рассел – это одно и то же лицо.
Приведённые формулировки законов логики и примеров к этим законам являются довольно неуклюжими словесными конструкциями и звучат непривычно, даже если речь идёт о самых простых по своей структуре законах. Естественный язык, использовавшийся в этих формулировках, явно не лучшее средство для данной цели. И дело даже не столько в громоздкости получаемых выражений, сколько в отсутствии ясности и точности в передаче законов.
Мало сказать, что о законах логики трудно говорить, пользуясь только обычным языком. Строго подходя к делу, нужно сказать, что они вообще могут быть адекватно переданы на этом языке.
Не случайно современная логика строит для выражения своих законов и связанных с ними понятий специальный язык. Этот формализованный языкотличается от обычного языка прежде всего тем, что следует за логической формой и воспроизводит её даже в ущерб краткости и лёгкости общения.