
- •Александр Ивин Логика Предисловие
- •Глава 1 Задачи логики
- •1. Правильное рассуждение
- •2. Логическая форма
- •3. Дедукция и индукция
- •4. Интуитивная логика
- •5. Некоторые схемы правильных рассуждений
- •6. Традиционная и современная логика
- •7. Современная логика и другие науки
- •Глава 2 Слова и вещи
- •1. Язык как знаковая система
- •2. Основные функции языка
- •3. Логическая грамматика
- •Глава 3 Имена
- •1. Виды имён
- •2. Отношения между именами
- •3. Определение
- •4. Деление
- •Глава 4 Высказывания
- •1. Простые и сложные высказывания. Отрицание, конъюнкция, дизъюнкция
- •2. Условное высказывание, импликация, эквивалентность
- •3. Описательные и оценочные высказывания
- •4. Модальные высказывания
- •Глава 5 Ловушки языка
- •1. Тайная мудрость языка
- •2. Многозначность
- •3. Эгоцентрические слова
- •4. Неточные и неясные имена
- •5. Гипостазирование
- •6. Роли имён
- •Глава 6 о смысле бессмысленного
- •1. Осмысленное и бессмысленное
- •2. Абсурд
- •3. Синтаксические нарушения
- •4. Семантические нарушения
- •5. Крайние случаи бессмысленного
- •Бармаглот
- •6. Туманное и тёмное
- •Глава 7 Логика высказываний
- •1. Логический закон
- •2. Закон противоречия
- •3. Закон исключённого третьего
- •4. Логические законы тождества, двойного отрицания и другие Закон тожества
- •Закон двойного отрицания
- •Законы контрапозиции
- •Модус поненс
- •Модус толленс
- •Модус понендо толленс
- •Модус толлендо поненс
- •Законы де Моргана
- •Закон приведения к абсурду
- •Закон косвенного доказательства
- •Закон Клавия
- •Закон транзитивности
- •Законы ассоциативности и коммутативности
- •Закон Дунса Скотта
- •5. Логическое следование
- •6. Язык логики предикатов
- •Глава 8 Модальная логика
- •1. Логические модальности
- •2. Физические модальности
- •3. Логическое исследование ценностей
- •Глава 9 Логика категорических высказываний
- •1. Категорические высказывания
- •2. Логический квадрат
- •3. Категорический силлогизм
- •Глава 10 Доказательство и опровержение
- •1. Понятие доказательства и его структура
- •2. Прямое и косвенное доказательство
- •3. Виды косвенных доказательств
- •4. Опровержение
- •5. Ошибки в доказательстве
- •6. Софизмы
- •Глава 11 Индуктивные рассуждения
- •1. Индукция как вероятное рассуждение
- •2. Неполная индукция
- •3. Подтверждение следствий
- •4. Полная индукция и математическая индукция
- •5. Методы установления причинных связей
- •Единственное сходство
- •Единственное различие
- •Сходство и различие
- •Сопутствующие изменения
- •Остающаяся часть причины
- •6. Надёжность индукции
- •7. Аналогия
- •Аналогия свойств и аналогия отношений
- •Вероятный характер аналогии
- •Понимание по аналогии
- •Типичные ошибки
- •Глава 12 Проблема понимания
- •1. Структура понимания
- •2. Сильное понимание
- •3. Понимание поведения
- •4. Понимание природы
- •5. Понимание языковых выражений
- •6. Объяснение
- •Глава 13 Аргументация и логика
- •1. Теория аргументации
- •2. Обоснование
- •3. Эмпирическая аргументация
- •4. Факты как примеры и иллюстрации
- •5. Теоретическая аргументация
- •6. Контекстуальная аргументация
- •7. Обоснование и истина
- •8. Аргументация в поддержку оценок
- •Глава 14 Спор и его виды
- •1. Корректные и некорректные споры
- •2. Споры об истине и споры о ценностях
- •3. Четыре разновидности споров
- •4. Общие требования к спору
- •5. Победа в споре
- •Вместо заключения
- •Примечания
2. Отношения между именами
Содержание имени – это совокупность тех свойств, которые присущи всем предметам, обозначаемым данным именем, и только им.:
К примеру, склероз – это, как известно, уплотнение каких-либо органов, вызванное гибелью специфических для этих органов элементов и заменой их соединительной тканью. Перечисленные свойства составляют содержание имени «склероз». Они позволяют в относительно любой ситуации решить, можно ли назвать происшедшие в органе изменения склерозом или нет. Содержание имени «стул» составляют свойства «быть предметом мебели, предназначенным для сидения» и «иметь ножки, сидение и спинку». Этими свойствами, относящимися к функциям стула и его строению, обладает каждый стул и не обладает ничто иное. Если изъять из числа структурных частей стула, скажем, спинку, получим содержание уже иного имени («табурет»). В содержание имени «стол» входят признаки «быть предметом мебели, предназначенным для сидения за ним» и «иметь ножки и крышку».
Помимо содержания, или смысла, имя имеет также объём.
Объём имени – это совокупность, или класс, тех предметов, которые обладают признаками, входящими в содержание имени.
Например, в объём имени «склероз» входят все случаи склеротического изменения органов, в частности склероз мозга. Объём имени «стул» включает все стулья, объём имени «стол» – все столы. Нетрудно заметить, что объёмы даже таких простых имён, как «стул» и «стол», являются неопределёнными, размытыми, а значит, сами эти имена относятся к неточным. Входит ли стул или стол, который только задумал сделать столяр, в объём имени «стул» или «стол»? В «Ревизоре» Н.Гоголя упоминается учитель, который, рассказывая об Александре Македонском, так горячился, что ломал стулья. Входят ли эти поломанные стулья в объём имени «стул»? На эти и подобные вопросы трудно ответить однозначно.
Понимание имени как того, что имеет определённый объём и определённое содержание, широко распространено в логике. Нетрудно заметить, что это понимание существенно отличается от употребления понятия «имя» в обычном языке. Имя в обычном смысле – это всегда или почти всегда собственноеимя, принадлежащее индивидуальному, единственному в своём роде предмету. Например, слово «Наполеон» является в обычном словоупотреблении типичным именем. Но уже выражения «победитель под Аустерлицем» и «побеждённый под Ватерлоо» к именам обычно не относятся. Тем более не относятся к ним такие типичные с точки зрения логики имена, как «квадрат», «человек», «самый высокий человек» и т.п. Во всяком случае, если бы кто-то на вопрос о своём имени ответил: «Моё имя – человек», вряд ли такой ответ считался бы уместным. И даже ответ: «Моё имя – самый высокий человек в мире» – не показался бы удачным.
То, что логика заметно расширяет обычное употребление слова «имя», объясняется многими причинами, и прежде всего её стремлением к предельной общности своих рассуждений.
Имена находятся в различных отношениях друг к другу. Между объёмами двух произвольных имён, которые есть какой-то смысл сопоставлять друг с другом, имеет место одно и только одно из следующих отношений: равнозначность, пересечение, подчинение(два варианта) иисключение.
Равнозначными являются два имени, объёмы которых полностью совпадают. Иными словами, равнозначные имена отсылают к одному и тому же классу предметов, но делают это разными способами.
Равнозначны, к примеру, имена «квадрат» и «равносторонний прямоугольник»: каждый квадрат является равносторонним прямоугольником, и наоборот.
Равнозначность означает совпадение объёмов двух имён, но не их содержаний. Например, объёмы имён «сын» и «внук» совпадают (каждый сын есть чей-то внук и каждый внук – чей-то сын), но содержания их различны.
Отношения между объёмами имён можно геометрически наглядно представить с помощью круговых схем. Они называются по имени математика XVIII в. Л.Эйлера «кругами Эйлера». Каждая точка круга представляет один предмет, входящий в объём рассматриваемого имени. Точки вне круга представляют предметы, не подпадающие под это имя.
Отношение между двумя равнозначными именами изображается в виде двух полностью совпадающих кругов.
Равнозначность
В отношении пересечения находятся два имени, объёмы которых частично совпадают.
Пересекаются, в частности, объёмы имён «лётчик» и «космонавт»: некоторые лётчики являются космонавтами (они представлены заштрихованной частью кругов), есть лётчики, не являющиеся космонавтами, и есть космонавты, не являющиеся лётчиками.
Пересечение
В отношении подчинения находятся имена, объём одного из которых полностью входит в объём другого.
В отношении подчинения находятся, к примеру, имена «треугольник» и «прямоугольный треугольник»: каждый прямоугольный треугольник является треугольником, но не каждый треугольник прямоугольный.
Подчинение
В этом же отношении находятся имена «дедушка» и «внук»: каждый дедушка есть чей-то внук, но не каждый внук является дедушкой. «Внук» – подчиняющее имя, «дедушка» – подчинённое.
Если в отношении подчинения находятся общие имена, то подчиняющее имя называется родом, а подчинённое –видом. Имя «треугольник» есть род для вида «прямоугольный треугольник», а имя «внук» – род для вида «дедушка».
В отношении исключения находятся имена, объёмы которых полностью исключают друг друга.
Исключают друг друга имена «трапеция» и «пятиугольник», «человек» и «планета», «белое» и «красное» и т.п.
Исключение
Можно выделить два вида исключения:
1. Исключающие объёмы дополняют друг друга так, что в сумме дают весь объём рода, видами которого они являются. Имена, объёмы которых исключают друг друга, исчерпывая объём родового понятия, называются противоречащими.
Противоречащими являются, например, имена «умелый» и «неумелый», «стойкий» и «нестойкий», «красивый» и «некрасивый» и т.п. Противоречат друг другу также имена «простое число» и «число, не являющееся простым», исчерпывающие объём родового имени «натуральное число», имена «красный» и «не являющийся красным», исчерпывающие объём родового имени «предмет, имеющий цвет», и т.п.
2. Исключающие имена составляют в сумме только часть объёма того рода, видами которого они являются. Имена, объёмы которых исключают друг друга, не исчерпывая объём родового имени, называются противоположными.
Противоречащие имена Противоположные имена
К противоположным относятся, в частности, имена «простое число» и «чётное число», не исчерпывающие объёма родового имени «натуральное число», имена «красный» и «белый», не исчерпывающие объёма родового имени «предмет, имеющий цвет» и т.п.
Круговые схемы могут применяться для одновременного представления объёмных отношений более, чем двух имён. Такова, к примеру, приводимая на рисунке схема, представляющая отношения между объёмами имён: «планета» (S), «планета Солнечной системы» (P), «Земля» (M), «спутник»(L), «искусственный спутник»(N), «Луна» (O) и «небесное тело»(C). Согласно этой схеме существуют, в частности, небесные тела, не являющиеся ни планетами, ни их спутниками, планеты, не входящие в Солнечную систему, спутники, не являющиеся искусственными, и т.д. Объёмы единичных имён представляются точками.