
- •1.2Организация проектных работ систем автоматизации.
- •1.3 Автоматиз-е сис-мы поддержки жизненного цикла промыш-й с-мы.
- •1.4 Стадии проектирования и состав проектов автом-ции тех-х пр-сов.
- •1.4.1Общие пр-пы составления проекта сис-м автом-ции (са).
- •1.4.2 Задание на проектирование са: содержание, исх. Данные.
- •1.4.3 Состав проектной документации в две стадии проектирования.
- •1.4.4 Состав проектной документации в одну стадию проектирования.
- •1.4.5 Задания на вып-е работ, связанных с автом-ей технол-х пр-сов.
- •1.4.5.1 Задание на размещение элементов са на технол-м оборудовании.
- •1.4.5.2 Задание на проектирование помещений са.
- •1.4.5.3 Задание на комплектные операторские пункты и помещения датчиков.
- •1.4.5.4 Задание на проемы и закладные устройства.
- •1.4.5.5 Задание на проектирование кабельных сооружений.
- •1.4.5.6 Задание на обеспечение средств автоматизации.
- •2.1 Структурные схемы сис-м измерения и автоматизации.
- •2.1.1 Структура систем управления.
- •2.1.2 Структурные схемы измерения и управления.
- •2.2 Фс измерения и автоматизации.
- •2.2.1 Назначение и круг решаемых задач.
- •2.2.2 Общие принципы проектирования (7).
- •2.3 Принцип-е электрические схемы контроля, управления и сигнализации.
- •2.3.1.1 Назначение и общие принципы построения.
- •2.3.1.2 Основные требования к содержанию и оформлению схем.
- •2.3.2 Проектир-ние принцип-х эл-х схем питания средств измер-я и авт-ии.
- •2.3.2.1. Выбор напряжения и требования к источникам питания систем автоматизации
- •2.3.2.2 Требования к источникам питания систем автоматизации.
- •2.3.2.3 Выбор схемы эл-го питания систем автоматизации.
- •2.3.2.4 Резервирование и автом-е вкл-е при резервировании систем автоматизации.
- •2.3.2.5 Аппаратура защиты и управления схем электропитания приборов и средств автоматизации.
- •2.3.2.6 Выбор аЗиУ сис-м автоматизации.
- •1. Выбор выключателей (пакетные выключ , рубильники, тумблеры)
- •2. Выбор предохранителей
- •3. Выбор автоматических выключателей (ав)
- •4. Выбор магнитных пускателей
- •5. Выбор тепловых реле
- •2.3.2.7 Выбор сечений проводов и жил кабелей.
- •2.3.2.8 Общий алгоритм выбора аЗиУ и сеч-й проводов кабелей.
- •2.3.2.9 Места установки аЗиУ.
- •2.4 Щиты и пульты, применяемые при автом-ии технол-х пр-сов.
- •2.4.1 Назначение, классификация, места установки и применение.
- •2.4.2 Распол-е приборов и ап-ры на фасадных панелях щитов и пультов.
- •2.4.3 Распол-е ап-ры, арматуры и проводок в щитах, пультах и стативах.
- •2.4.4 Чертежи общих видов щитов и пультов.
- •2.4.4.1 Состав и общие требования.
- •2.4.4.2 Вид спереди.
- •2.4.4.3 Вид на внутренние плоскости щита.
- •2.4.4.4 Технические требования.
- •2.4.4.5 Таблицы надписей на табло и в рамках.
- •2.4.4.6 Перечень составных частей.
- •2.4.4.7 Таблица соединений и подключения. Общие требования.
- •2.4.4.8. Таблица соединений
- •2.4.4.9 Таблица подключения.
- •2.5 Электрические и трубные проводки сис-м автом-ции.
- •2.5.1 Электрические проводки.
- •2.5.1.1. Классиф-я, способ прокладки и последовательность выбора
- •2.5.1.2. Выбор проводов (материал, сечение, резервирование) и кабелей
- •2.5.2 Трубные проводки
- •2.5.2.1. Назначение и классификация
- •2.5.2.2. Выбор мест прокладки трубных проводок. Требования к прокладке
- •2.5.2.3. Выбор труб и пневмокабелей для трубных проводок
- •2.5.3.1. Схемы соединений и подключения внешних проводок: назначение и общие требования
- •2.5.3.2. Схема соединений внешних проводок
- •2.5.3.3. Схема подключения внешних проводок
- •2.5.3.4. Таблицы соединений внешних проводок
- •2.5.3.5. Таблицы подключения внешних проводок
- •3.1 Расчет надежности эл-х сис-м автом-го управ-я и сигнализации.
- •3.1.1Осн-е св-ва и показатели надежности.
- •3.1.3 Обеспечение и оценка надежности при проектировании.
- •3.1.3.1 Общетехнич-е м-ды ↑ния надежности сау.
- •3.1.3.2. Специальные методы обеспечения надежности сау
- •3.1.4 Алгоритмы расчета надежности при проектировании сау.
- •3.1.4.1. Алгоритм прикидочного расчета надежности сау
- •3.1.4.2. Алгоритм окончательного расчета надежности сау
- •3.2.1 Состав сметной документации. Общие положения.
- •3.2.2 Виды смет.
- •3.2.3 Порядок разработки локальных смет. Применение индексов изменения стоимости пусконаладочных работ.
- •4.1 Асу: уровни управления.
- •4.2 Стадии проектирования асу.
- •4.3 Проектирование scada-систем.
- •4.3.1Назначение и типовые фун-ии
- •4.3.2 Критерии выбора scada-системы.
- •4.3.2.1 Общие подходы.
- •4.3.2.2 Эксплуатационные показатели
- •4.3.2.3 Экономические показатели.
- •4.3.2.4 Технические показатели.
- •4.3.3Последовательность проектирования scada-систем.
- •4.3.3.1 Проектирование экранных форм объектов управ-я и органов управ-я (статика и анимация).
- •4.3.3.2 Обработка особых состояний (тревоги и события).
- •4.3.3.3 Протоколирование инфы о ходе технол-го пр-са.
- •4.3.3.4 Управление переменными (тэгами).
- •4.3.3.5 Реализация алгоритмов управления.
- •4.3.3.6 Управление вводом/выводом.
- •4.3.3.7 Контроль и управление доступом.
1.4.5.6 Задание на обеспечение средств автоматизации.
1) электроэнергией. Содержит: чертежи с размещением потребителей электроэнергии (на планах объекта); данные по мощности, напряжению, роду тока, подводимого к каждому приемнику: требования к качеству электроэнергии (допустимые отклонения напряжения, частоты и т. д. от номинальных значений).
При необходимости указываются особые требования, например, а) к схеме питающей сети: радиальная с одно- или двусторонним питанием, радиально-магистральная, магистральная с одно- или двусторонним питанием (от одного источника или двух независимых); б) к способам прокладки кабелей питания и выбору их марок.
2) сжатым воздухом. Содержит:
а) чертеж размещения вводных распределительных коллекторов для подвода воздуха в помещение систем автоматизации или к местным щитам;
б) значения параметров сжатого воздуха (давление, расход, температура, точка росы);
в) требования к качеству сжатого воздуха, материалу воздухопроводов, способу их прокладки и температуре окружающей среды;
г) график потребления воздуха в течение месяца, года (при необходимости).
3) гидравлической энергией. Содержит:
а) чертеж размещения вводных распределительных коллекторов;
б) наименование и параметры рабочей жидкости (давление, расход, температура);
в) указания о расположении низшей точки системы, о возможности слива отработанной жидкости;
г) желательное направление прокладки питающей сети и материал трубопроводов.
2.1 Структурные схемы сис-м измерения и автоматизации.
2.1.1 Структура систем управления.
При разработке проекта автоматизации в первую очередь необходимо решить, с каких мест те или иные участки объекта будут управляться, где будут размещаться пункты управления (ПУ), операторские помещения, какова должна быть взаимосвязь между ними, т. е. необходимо решить вопросы выбора структуры управления. Под структурой управления понимается совокупность частей автоматической системы, на которые она может быть разделена по определенному признаку, а также пути передачи воздействий между ними. Графическое изображение структуры управления называется структурной схемой. Структуры управления объектом автоматизации могут быть в частных случаях одноуровневыми централизованными, одноуровневыми децентрализованными и многоуровневыми. Одноуровневые системы управления, в которых управление объектом осуществляется с одного пункта управления, называются централизованными. Одноуровневые системы, в которых отдельные части сложного объекта управляются из самостоятельных пунктов управления, называются децентрализованными.
Структурные схемы одноуровневых централизованных и децентрализованных систем приведены на рис. 2.1, на котором стрелками показаны только основные потоки передачи информации от объекта управления к системе управления и управляющие воздействия системы на объект управления. На рис. 2.1 (б) отдельные части сложного объекта управления, управляемые соответственно с пунктов управления ПУ1 — ПУ3, разделены штриховыми линиями.
Рис. 2.1. Примеры одноуровневых систем управления: а — централизованная система; б — децентрализованная система.
Одноуровневые централизованные системы применяются в основном для управления относительно несложными объектами или объектами, расположенными на небольшой территории.
Удаленность пункта управления от того или иного вспомогательного подобъекта затрудняет принятие оперативных мер по устранению тех или иных неполадок. В этом случае более приемлемой становится одноуровневая децентрализованная система управления.
Рис. 2.2. Пример трехуровневой системы управления: I—III — уровни управления
Однако с помощью одноуровневых систем не всегда представляется возможным оптимально решить вопросы управления технологическими процессами. Это в первую очередь относится к сложным технологическим процессам. Тогда целесообразно переходить к многоуровневым системам управления. В качестве примера на рис. 2.2 представлена трехуровневая система управления сложным объектом с разветвленными технологическими связями между установками. Отдельные технологические установки управляются децентрализованно с пунктов управления 1–7. Это первый уровень управления. С пунктов 1–7 соответственно управляются объекты, имеющие существенную технологическую взаимосвязь. В связи с этим наиболее ответственные регулируемые параметры установок передаются на пункты управления 8 – 10 второго уровня управления. Основные параметры, определяющие технологический процесс объекта в целом, могут управляться и контролироваться с пункта управления 11 третьего уровня.