Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_matanu_1_kurs.doc
Скачиваний:
62
Добавлен:
26.03.2015
Размер:
671.74 Кб
Скачать

11. Производная основных элементарных функций.

Производная логарифмической функции. y=logax

y=loga(x+x)-logax=loga(1+x/x)=1 loga(1+x/x)= 1loga(1+t)=1 loga(1+t)1/t

x x x x x/x x t x

где t=x/x Используя непрерывность функции logax в точке х=е и первый замечательный предел, найдём производную логарифмической функции: (logах)= 1(logа(lim(1+t)1/t) = 1logae= 1.

x t0 x x lna

Производная показательной функции.

У=ах является обратной для функции х=logау. По теореме

ух= 1= 1 =ylna

xy 1/ylna

Поскольку у=ах, получаем (ах)=ахlna.

Производная степенной функции.

Функция у=ха при х>0 может быть представлена в виде хаalnx. Найдём (ха)=( еalnx)= еalnx(alnx)=ха*а/х=аха-1 Аналогично доказывается для x<0.

Производные тригонометрических функций.

С помощью формулы sinа-sinb=2sin[(a-b)/2]*cos[(a+b)/2] , первого замечательного предела и непрерывности функции cos x найдём

(sinх)=lim sin (х+х) – sinх= lim 2sin(х/2) cos(х+х/2) =

x0 x x0 x

=lim sin(х/2) cos(х+х/2) = cos x

x0 x/2

Для нахождения производных функций cos x и tg x можно использовать тождество cos x=sin(x-/2) , правило дифференцирования сложной функции.

Итак, (sin х)=cos x, (cos x)= - sin x, (tg x)=1/cos2 x.

Производные обратных тригонометрических функций.

Функция у=arcsinx является обратной для функции х=sinу. Следовательно, (arcsinx)x= 1 = 1= 1= 1

(siny)y cosy 1-sin2x 1-x2

Аналогично находятся остальные обратные тригонометрические функции. (arcsinx)=1/1-x2, (arccosx)= - 1/1-x2, (arctgx)=-1/(x2+1).

12. Правило Лопиталя

Теорема (правило Лопиталя). Пусть А – число, символ одностороннего предела (А=а±0) или символ бесконечности (А=±∞). Пусть функции ƒ(х) и g(х) либо обе бесконечно малые, либо обе бесконечно большие при х→А. Тогда, если существует предел

(конечный или бесконечный),

то существует и предел при этом выполняется равенство:

Доказательство:

Доказательство теоремы дадим в случае, когда ƒ(х) и g(х) – бесконечно малые функции иА=а – число. Изменим, если это необходимо, определение функций ƒ(х) и g(х) в точке а так, чтобы значения этих функций в точке а были бы равны нулю: ƒ(х) = g(х)=0. Так как

и

то ƒ(х) и g(х) непрерывны в точкеа, и к этим функциям можно применить теорему Коши. Учитывая, что ƒ(а) = ƒ(b)=0, получим

для некоторой точки с, расположенной между точками а и х. При х→а имеем с→а и, следовательно если ƒ(х)→0 и g(х)→0 (соответственно, |ƒ(х)|→+∞, |g(х)|→+∞), когда а→А. Правило Лопиталя позволяет во многих случаях найти предел вида

или, иными словами, раскрыть неопределенность.

В ряде случаев по правилу Лопиталя удается раскрыть неопределенности вида

Для этого следует воспользоваться тождеством

которое приводит указанные неопределенности к виду 0•х.