Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_matanu_1_kurs.doc
Скачиваний:
62
Добавлен:
26.03.2015
Размер:
671.74 Кб
Скачать

2. Дифференциальные уравнения высших порядков. Задача Коши.

Обыкновенным дифференциальным уравнением называется выражение, связывающее независимую переменную х, функцию у и ее производные.

Порядком дифференциального уравнения называется наивысший порядок производной, входящей в это уравнение.

Дифференциальное уравнение n-го порядка вида у(n) =f(x, у, у',…у(n-1)) (*)

называется разрешенным относительно высшей производной.

Решением дифференциального уравнения n-го порядка называется всякая функция у=φ(x), определенная для значений х на конечном или бесконечном интервале , имеющая производные до n-го порядка включительно, и такая, что подстановка этой функции и ее производных в дифференциальное уравнение обращает последнее в тождество по х.

Нахождение решений дифференциального уравнения называется интегрированием этого дифференциального уравнения.

во многих случаях требуется находить решение дифференциального уравнения, удовлетворяющего некоторым дополнительным условиям, например, задача Коши состоит в отыскании решения диф. уравнения (*), определенного в некоторой окрестности точки х0 и такого, что

у(х0)= у0 , у'( х0)=у1,..., у(n-1)0)= уn-1, где у0, у1,…, уn-1 – заданные числа.

3. Линейные дифференциальные уравнения: однородные и неоднородные.

Фундаментальная система решений. Метод Лагранжа вариации постоянных.

Линейное дифференциальное ур-е n-го порядка: y(n) + a1(x) y(n-1) +…+an(x) y = b(x) наз неоднородным, если b(x)≠0; однородным уравнение наз в том случае, если b(x)=0.

Если у11(х), у22(х),… уkk(х) – решения однородного ур-я y(n) + a1(x) y(n-1) +…+an(x) y =0(*), то любая их линейная комбинация С1у1 + С2у2+…+ Сkуk, где С1, С2 – постоянные, также решение этого однородного ур-я.

Система ф-й наз линейно независимой на интервале (a,b), если ни одна из этих ф-й не может быть выражена в виде линейных комбинации остальных ф-й. Фундаментальный набор решений –это набор линейно независимых решений ур-я (*), содержащий количество ф-й, равное порядку дифференциального ур-я.

Теорема. Для того, чтобы решения у11(х), у22(х),… уkk(х) линейного однородного диф-го ур-я с непрерывными на отрезке [a,b] коэффициентами были Л.Н.З. на интервале (a,b), необходимо и достаточно, чтобы определитель Вронского

| φ1(х) φ2(х)… φn(х) |

W(x)=| … |

| φ1(n-1)(х) φ2(n-1)(х)… φn(n-1)(х)|

был отличен от нуля при любом х из [a,b].

Любое решение однородного ур-я можно представить в виде линейной комбинации фундаментального набора решений : ў=∑i=1n Ciyi , где Ci (i=1,2,…) – произвольные постоянные. (общее решение однородного диф. Ур-я(*)).

4. Связь между общим и решением однородной и неоднородной систем.

Пусть ў – общее решение однородного уравнения(*), ỳ- некоторое решение неоднородного уравнения y(n) + a1(x) y(n-1) +…+an(x) y = b(x) (**). Тогда у= ў+ ỳ - общее решение неоднородного ур-я (**). Зная общее решение неоднородного ур-я, легко найти любое его частное решение.

5. Метод Лагранжа вариации постоянной.

Сначала решается однородное линейное дифференциальное уравнение (*), соответствующее неоднородному (**): находят общее решение (*). Затем постоянную величину С, входящую в полученное общее решение, полагают новой неизвестной функцией от х: С=С(х), т.е. варьируют произвольную постоянную. Найденную ф-ю подставляют в полученное на первом этапе общее решение однородного уравнения, получаем общее решение неоднородного уравнения.