Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шех методичка.doc
Скачиваний:
54
Добавлен:
25.03.2015
Размер:
1 Mб
Скачать

Температурная инверсия в атмосфере

Повышение температуры в тропосфере атмосферы с ростом высоты характеризуется как температурная инверсия(рис. 11.1, в). В этом случае атмосфера оказывается весьма устойчивой. Наличие инверсии в значительной степени замедляет вертикальное перемещение загрязняющих веществ и, как следствие, увеличивает их концентрацию в приземном слое.

Наиболее часто наблюдается инверсия, возникающая при опускании слоя воздуха в воздушную массу с более высоким давлением, либо при радиационной потере тепла земной поверхностью в ночное время. Первый тип инверсии обычно называют инверсией оседания. Инверсионный слой в этом случае обычно располагается на некотором расстоянии от земной поверхности, а формируется инверсия путем адиабатического сжатия и нагревания слоя воздуха в процессе его опускания вниз в область центра высокого давления.

Из уравнения (11.5) получаем:

. (11.10)

Значение удельной изобарной теплоемкости Срдля воздуха не значительно изменяется от температуры в достаточно большом температурном диапазоне. Однако в связи с изменением барометрического давления плотность на верхней границе слоя инверсии меньше, чем у его основания, т. е.

. (11.11)

Это означает, что верхняя граница слоя нагревается быстрее, чем нижняя. Если опускание продолжается в течение длительного времени, в слое будет создаваться положительный градиент температуры. Таким образом, опускающаяся воздушная масса является как бы гигантской крышкой для атмосферы, расположенной ниже слоя инверсии.

Слои инверсии оседания обычно оказываются выше источников выбросов и, таким образом, не оказывают существенного влияния на явления короткопериодного загрязнения атмосферного воздуха. Однако такая инверсия может просуществовать несколько дней, что сказывается на долговременном накоплении загрязняющих веществ. Случаи загрязнения с опасными последствиями для здоровья людей, наблюдавшиеся в городских районах в прошлом, часто были связаны с инверсиями оседания.

Рассмотрим причины, приводящие к возникновению радиационной инверсии. В этом случае слои атмосферы, расположенные над поверхностью Земли, в течение дня получают тепло за счет теплопроводности, конвекции и излучения от земной поверхности и в итоге нагреваются. В результате температурный профиль нижних слоев атмосферы обычно характеризуется отрицательным температурным градиентом. Если затем следует ясная ночь, то земная поверхность излучает тепло и быстро остывает. Слои воздуха, прилегающие к земной поверхности, охлаждаются до температуры расположенных выше слоев. В результате дневной температурный профиль преобразуется в профиль обратного знака, и слои атмосферы, прилегающие к земной поверхности, прикрываются устойчивым инверсионным слоем. Этот тип инверсии наблюдается в ранние часы и характерен для периодов ясного неба и безветренной погоды. Инверсионный слой разрушается восходящими потоками теплого воздуха, возникающими при нагревании поверхности земли лучами утреннего солнца.

Радиационная инверсия играет важную роль в загрязнении атмосферы, так как в этом случае инверсионный слой располагается внутри слоя, который содержит источники загрязнения (в отличие от инверсии оседания). Кроме того, радиационная инверсия наиболее часто происходит в условиях безоблачных и безветренных ночей, когда мала вероятность очищения воздуха от загрязнения осадками или боковыми ветрами.

Интенсивность и продолжительность инверсии зависят от сезона. Осенью и зимой, как правило, имеют место продолжительные инверсии, их число велико. На инверсии оказывает влияние и топография местности. Например, холодный воздух, скопившийся ночью в межгорной котловине, может быть «заперт» там теплым воздухом, оказавшимся над ним.

Возможно и другие типы локальных инверсий, например инверсии, связанные с морским бризом при прохождении теплого воздушного фронта над большим континентальным участком суши. Прохождение холодного фронта, перед которым расположена область теплого воздуха, также приводит к инверсии.

Инверсии – обычное явление для многих районов. Например, на западном побережье США они наблюдаются в течение почти 340 дней в году.

Степень устойчивости атмосферы можно определить по величине градиента «потенциальной» температуры:

. (11.12)

где – градиент температуры, наблюдаемый в окружающем воздухе.

Отрицательное значение градиента «потенциальной» температуры (Гпот< 0) свидетельствует о сверхадиабатическом характере профиля температуры и неустойчивых условиях в атмосфере. В случае, когдаГпот> 0, атмосфера устойчива. В случае, если градиент «потенциальной» температуры приближается к нулю (Гпот 0), атмосфера характеризуется как безразличная.

Кроме рассмотренных случаев температурной инверсии, которые носят локальный характер, в атмосфере Земли наблюдаются две инверсионные зоны глобального характера. Первая зона глобальной инверсии от поверхности Земли начинается с нижней границы тропопаузы (11 км для стандартной атмосферы) и заканчивается на верхней границы стратопаузы (примерно 50 км). Эта инверсионная зона препятствует распространению примесей, образовавшихся в тропосфере или выделяющихся с поверхности Земли, в другие области атмосферы. Вторая зона глобальной инверсии, расположенная в термосфере, в определенной степени препятствует рассеянию атмосферы в космическое пространство.

Пример

Рассмотрим на примере порядок определения градиента «потенциальной» температуры. Температура у поверхности Земли на высоте 1,6 м составляет –10 °С, на высоте 1800 м – –50 °С, –12 °С, –22 °С.

Целью расчета является оценка состояния атмосферы по величине градиента «потенциальной» температуры.

Для расчета градиента «потенциальной» температуры воспользуемся уравнением (11.12)

, град./м,

, град./м,

, град./м.

Здесь Г= 0,00645 град./м – стандартный, или нормальный адиабатический вертикальный, температурный градиент.

Проанализируем рассчитанные значения градиента «потенциальной» температуры. Характер изменения температуры для рассматриваемых случаев состояния атмосферы представлен на рис. 11.2.

Гпот 1< 0 свидетельствует о сверхадиабатическом характере профиля температуры и неустойчивых условиях в атмосфере.

Гпот 2> 0 – атмосфера устойчива.

Гпот 3≈ 0 – атмосфера характеризуется как безразличная.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]