Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
саруровня4.doc
Скачиваний:
10
Добавлен:
25.03.2015
Размер:
4.68 Mб
Скачать

Турбинный расходомер

Турбинный расходомер предназначен для определения расхода жидкости в трубопроводе. На рис.6 представлен вид турбинного расходомера. Принцип действия расходомера основан на измерении скорости потока жидкости при помощи легкой крыльчатки, установленной на пути движения жидкости.

Рис. 6 Турбинный расходомер

В корпусе датчика установлен оптоэлектронный преобразователь (свето-диод и фото- транзистор), который формирует импульсы, частота которых прямо пропорциональна числу оборотов крыльчатки, а следовательно измеряемому расходу, в диапазоне от 0 до 5 литров в минуту.

Рис.7 Оптоэлектронный преобразователь

При измерении мгновенного значения расхода применяют схему измерения частоты с преобразованием частоты импульсов в диапазоне от 15 до 1200 Гц в постоянное

напряжение в диапазоне от 0 до 10 В.

Датчики давления

Электрический манометр

Рис.8 Электрический манометр

Электрический манометр с керамической мембраной и пьезорезистивным чувствительным элементом измеряет избыточное давление от 0 до 400 КПа, и преобразует давление в выходной электрический сигнал в диапазоне от 0 до 10 В., класс точности 0,5.

Манометр с трубчатой пружиной

Манометр с чувствительным элементом трубкой Бурдона измеряет давление в емкости В103 (металлический резервуар), диапазон измерения избыточного давления в диапазоне от 0 до 1 бар, класс точности 2,5.

Рис.9 Манометр механический

Пневматический клапан

Клапан с пневматическим исполнительным устройством предназначен для перепуска воды из вехнего бака 102 в нижний бак 101. Общий вид клапана представлен на рис. 10.

Рис. 10 Пневматический клапан

При подаче электрического сигнала на электромагнитное реле, воздух проходит в камеру поворотного механизма и перемещает поршень до упора, что приводит к повороту на 90о шарового органа и вода свободного перетекает из бака в бак. Положение поворотного механизма контролируется визуально и электрическими сигнализаторами. Красный цвет соответствует положению « КЛАПАН ЗАКРЫТ», желтый цвет соответствует положению « КЛАПАН ОТКРЫТ». Электрические сигналы с двух микро-переключателей соответственно выводятся на экран пульта управления «CLOSED/OPEN».

Вентили

Вентили конструктивно выполнены с шаровыми запорными органами, которые можно поворачивать вручную.и создавать различное проходное сечение для движущегося потока жидкости в трубопроводе. На рис.11 представлен общий вид вентиля. С помощью вентилей можно задавать различные схемы движения потока по трубопроводам, для этих целей каждый вентиль маркируется номером и устанавливается в открытом или закрытом положении. Если черная полоса на вентиле устанавливается перпендикулярно трубопроводу, то вентиль «ЗАКРЫТ», если черная полоса на вентиле устанавливается вдоль трубопровода, то вентиль «ОТКРЫТ».

Рис. 11 Вентиль (положение«ЗАКРЫТ»)

Уровнемер ультразвуковой

Уровнемер ультразвуковой определяет расстояние до предмета, измеряя время, которое протекает между отправкой ультразвуковой вспышки и достижением отраженного от объекта назад на датчик. На рис.12 представлен вид уровнемера ультразвукового.

Звук с частотой более чем 16 кГц не воспринимается человеческим слухом. Подобные звуки называют ультразвуками. Акустика ультразвуко-вых частот движется со скоростью 344 м/с в воздушной среде. Ультразвуковые датчики работают с пьезоэлектрическим преобразователем, который является как звуковым излучателем, так и приемником.

Рис.12 Уровнемер ультразвуковой

Передатчик и приемник находятся в одном и том же корпусе. Водонепроницаемый ультразвуковой датчик помещен в корпус с пенополиуретаном. Преобразователь посылает пакет звуковых импульсов и преобразовывает импульс эха в напряжение. Интегрируемый контроллер вычисляет расстояние по времени эха и скорости звука. Ультразвуковая частота находится между 65 кГц и 400 кГц, в зависимости от типа датчика; частота следования импульсов между 14 Гц и 140 Гц. На рис. 13 представлена

эпюра ультразвуковых сигналов передатчика и приемника, при уменьшении расстояния

затухание сигналов приводит к образованию слепой зоны.

Рис. 13 Ультразвуковые сигналы передатчика и приемника

Выходной электрический сигнал пропорциональный расстоянию запрограммирован в диапазоне от 0 до 10 В. На рис.14 представлены зона неуверенного приема сигнала (слепая зона) в диапазоне от 0 до 46 мм от датчика и зона уверенного приема сигнала от 46 до 346 мм.

Рис.14 Зона уверенного приема сигнала

На рис.15 представлена теоретическая зависимость между температурой воздуха, давлением и скоростью звука.

:

Рис.15 Зависимость между температурой воздуха, давлением и скоростью звука.

Поскольку в промышленных ультразвуковых датчиках вычисляется время эха сигнала датчики термокомпенсированы. Эта особенность способствует устранению температур-ных влияний на выходе датчика. Для определения абсолютной точности измеренного значения ультразвукового датчика, необходимо учитывать следующие факторы:

- температура,

- атмосферное давление,

- относительная влажность,

- турбулентность,

- участки перегрева в воздухе, окружающем датчик или объект,

- датчик в горячем состоянии рабочего режима.