
- •1.Введение в электротехнику
- •2. Основные понятия и определения в электротехнике. Закон Ома.
- •3. Законы Кирхгофа.
- •4.Получение синусоидального тока.
- •5.Амплитуда, частота , фаза синусоидальной величины. Действующее значение синусоидального тока.
- •Закон Джоуля — Ленца
- •6.Векторное представление синусоидальных токов и напряжений Изображение синусоидальных эдс, напряженийи токов на плоскости декартовых координат
- •. Векторное изображение синусоидальноизменяющихся величин
- •7. Неразветвленная цепь синусоидального тока. Резонанс напряжений.
- •Резонанс напряжений
- •8.Параллельное включение приемников электрической энергии. Резонанс токов.
- •А) Параллельный колебательный контур без потерь
- •Б) Параллельный колебательный контур с потерями
- •9.Мощности цепи синусоидального тока. Коэффициент мощности
- •Коэффициент мощности
- •10. Особенности трехфазных систем.
- •11. Трехфазный синхронный генератор.
- •12. Системы соединения трехфазных цепей
- •Соединение обмоток генератора звездой
- •Соединение обмоток генератора треугольником
- •13.Векторные диаграммы трехфазной цепи.
- •14. Мощности трехфазной цепи.
- •15. Магнитные материалы и магнитные цепи.
- •9.2. Свойства ферромагнитных материалов
- •Расчет магнитных цепей
- •16.Устройство, принцип действия трансформатора.
- •17. Режимы трансформатора.
- •18. Внешняя характеристика трансформатора. Кпд трансформатора.
- •Коэффициент полезного действия трансформатора
- •19. Устройство и принцип действия машин постоянного тока. Устройство машины постоянного тока
- •Принцип работы машины постоянного тока
- •20. Реакция якоря машины постоянного тока. Реакция якоря машины постоянного тока
- •21. Схемы возбуждения машин постоянного тока.
- •22. Внешние характеристики машин постоянного тока.
- •23. Пуск и регулирование скорости вращения двигателей постоянного тока.
- •24. Устройство асинхронного двигателя
- •25. Вращающееся магнитное поле.
- •27. Энергетический баланс асинхронного двигателя.
- •28. Пуск и регулирование скорости асинхронного двигателя. Способы пуска асинхронных двигателей
- •2. Регулирование скорости вращения асинхронных двигателей с короткозамкнутым ротором
- •3. Регулирование скорости вращения асинхронных двигателей с фазным ротором
- •29. Устройство синхронной машины
- •30. Принцип действия синхронной машины.
- •31. Реакция якоря синхронной машины.
- •32. Внешняя характеристика синхронного генератора.
- •34.Уравнения движения электропривода.
- •35. Нагревание и охлаждение электродвигателя.
- •36. Режимы работы электродвигателя.
- •37. Расчет мощности электродвигателя.
- •38. Выбор электродвигателя.
- •39. Элементы физики полупроводников.
- •40. Полупроводниковые диоды, тиристоры, транзисторы, микросхемы, электронно-оптические приборы.
- •43. Системы измерительных приборов
37. Расчет мощности электродвигателя.
Методика расчета мощности электродвигателя при неизменяющейся нагрузке. Существует много механизмов, работающих продолжительно с неизменной или мало меняющейся нагрузкой без регулирования скорости, например насосы, компрессоры, вентиляторы и т.п. При выборе электродвигателя для такого режима необходимо знать мощность, потребляемую механизмом. Если эта мощность неизвестна, ее определяют теоретическими расчетами или расчетами по эмпирическим формулам с использованием коэффициентов, полученных из многочисленных опытов. Для малоизученных механизмов необходимую мощность определяют путем снятия нагрузочных диаграмм самопишущими приборами на имеющихся уже в эксплуатации аналогичных установках либо путем использования нормативов потребления энергии, полученных на основании статистических данных, учитывающих удельный расход электроэнергии при выпуске продукции. При известной мощности механизма мощность электродвигателя выбирается по каталогу с учетом КПД промежуточной передачи. Расчетная мощность на валу электродвигателя: | ||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||
Номинальная мощность электродвигателя, принятого по каталогу, должна быть равна или несколько больше расчетной. Выбранный электродвигатель не нуждается в проверке по нагреву или по перегрузке, так как завод-изготовитель произвел все расчеты и испытания, причем основанием для расчетов являлось максимальное использование материалов, заложенных в электродвигателе при его номинальной мощности. Иногда, однако, приходится проверять достаточность пускового момента, развиваемого электродвигателем, учитывая, что некоторые механизмы имеют повышенное сопротивление трения в начале трогания с места (например, транспортеры, некоторые механизмы металлорежущих станков). Мощность (кВт) электродвигателя для насоса определяется по формуле:
Подставив необходимые значения, Вы можете рассчитать мощность прямо сейчас Начало формы
Конец формы
где
Для центробежного насоса особенно важен правильный выбор частоты вращения электродвигателя, так как производительность насоса Q, расчетная высота H, момент М и мощность Р на валу электродвигателя зависят от угловой скорости W. Для одного и того же насоса значения Q1, H1, M1, P1 при W1 связаны со значениями Q2, H2, M2, P2 при скорости W2 соотношениями Q1/Q2=W1/ W2; H1/H2=M1/M2=W21/ W22; P1/ P2=W31/ W32. Из этих соотношений следует, что при завышении угловой скорости электродвигателя потребляемая им мощность резко возрастает, что приводит к перегреву его и выходу из строя. При заниженной скорости создаваемый насосом напор может оказаться недостаточным, и насос не будет перекачивать жидкость. Мощность (кВт) электродвигателя для поршневого компрессора
Начало формы
Конец формы
где
Определив мощность поршневого компрессора, Вы можете подобрать электродвигателю соответствующие частотные преобразователи СТА. Мощность (кВт) электродвигателя для вентилятора
Начало формы
Конец формы
где
По этой формуле также определяется мощность электродвигателя для центробежного вентилятора. Эксплуатационные свойства механизмов центробежного типа (насосов, компрессоров и вентиляторов) определяются зависимостью напора (давление жидкости или газа на выходе механизма) от производительности при различных угловых скоростях механизма. Эти зависимости, называемые Q - H характеристиками, обычно приводятся в виде графиков в каталогах для каждого конкретного механизма. |