Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Глава 2

.docx
Скачиваний:
20
Добавлен:
23.03.2015
Размер:
370.88 Кб
Скачать

Глава 2. Ассоциаты в жидкостях Ассоциаты – это неустойчивые группы (димеры, тримеры), в которых молекулы связаны ван–дер–ваальсовыми, диполь–дипольными и другими силами, взаимодействиями с переносом заряда, включая водородную связь. Существует три способа приближенного описания строения жидкостей. Один из них опирается на представление об ассоциатах и комплексах, другой связан с понятием о функциях распределения частиц, третий использует понятия о флуктуациях. Поскольку строение жидкостей определятся короткодействующими химическими силами, то и корреляция, то есть взаимосвязь положений молекул, также должна зависеть, в основном, от короткодействующих сил химического типа. Эти силы определяют вероятные положения молекул первой координационной сферы. От этих сил зависят вероятные положения молекул второй координационной сферы по отношению к молекулам сферы и так далее. Таким образом, корреляция есть статистическое описание ассоциации и комплексообразования. Функции распределения положений частиц, описывающие корреляцию молекул или атомов, имеют статистическую природу. Связь между функциями распределения и межмолекулярными взаимодействиями, а также строением ассоциатов и комплексов сложна и неоднозначна. Известен ряд приближенных аналитических выражений этой связи, которые, как правило, основаны на предположении, что молекулы представляют собой шарики. Потенциал взаимодействия молекул обычно подбирается с помощью эмпирических соотношений, например, уравнения Леннарда – Джонса. Этот подход получил наибольшее распространение при описании строения одноатомных жидкостей, таких, как жидкий аргон.  Наибольший интерес представляют те сведения о функциях распределения, которые могут быть получены на основе анализа экспериментальных данных, то есть независимо от модели системы. Основным источником такой информации для жидкостей служат рассеяние рентгеновских лучей или нейтронов. Каждый из этих методов позволяет получить сведения о радиальной функции распределения g(R). К сожалению, g(R) малочувствительна даже к существенным изменениям не только дальнодействующей, но и близкодействующей части потенциометрической энергии межмолекулярных сил. Метод функций распределения в настоящее время не дает возможности исследовать механизмы быстрых процессов, протекающих в жидких фазах. Наиболее перспективен в этом отношении способ описания структуры жидкостей с помощью понятий об ассоциатах и комплексах.  Каждую жидкую фазу можно считать гигантской макромолекулой. В таких огромных макромолекулах встречаются однотипные, малые фрагменты, содержащие небольшое число атомных ядер, взаимное расположение которых более или менее фиксировано. Эти фрагменты – упорядоченные образования, возникающие в результате химического взаимодействия между частицами, называются молекулами, их ассоциатами и комплексами. Ассоциаты и комплексы – однотипные образования и различаются только своим составом. Ассоциатами называются такие упорядоченные образования, которые состоят из одинаковых молекул (мономерных звеньев). Таков ассоциат (H2O)p, в котором имеется р молекул воды, ассоциат метилового спирта (СН3ОН)n и так далее. Комплексы отличаются от ассоциатов тем, что состоят из разнородных молекул.  Для характеристики ассоциатов необходимо знать их состав, структуру, а также энергии химических связей между частицами (молекулами, атомами, ионами), образующими ассоциат. Когда состав и структура ассоциатов установлена, нужно найти их концентрации. Как правило, в чистых жидкостях имеется множество различных ассоциатов, а в растворах кроме ассоциатов присутствует очень много разнообразных комплексов. Полное описание всех видов и форм ассоциатов, которые могут быть в какой – либо жидкой фазе, не может быть достигнуто ни одним из современных методов исследования или их сочетанием. Но можно определить основные, типические ассоциаты, наиболее часто встречающиеся в данной жидкости, и поэтому в первом приближении, характеризующие ее строение. Такая характеристика будет приближенной. Положительная сторона ее состоит в наглядности, возможности проверки несколькими независимыми методами, а, главное, в способности предсказывать свойства жидких фаз и изучать молекулярные механизмы тех процессов, которые протекают в жидкостях. Рассмотрим пример – описание структуры жидких одноатомных алканолов RОН.  Молекулы жидких алканолов могут образовывать друг с другом связи вида: О – НОС – Н…О и С – Н…С. Ограничимся характеристикой тех ассоциатов, которые возникают за счет более прочных связей О – Н…О. Атом кислорода в молекуле RОН имеет две не поделенные пары электронов и может принимать участие не более, чем в двух связях О – Н…О. В результате могут образовываться цепочечные и кольцевые ассоциаты, разветвленные и неразветвленные. Приведем примеры. Цепочечные неразветвленные ассоциаты. В неразветвленных цепочечных ассоциатах (RОН)p каждый атом кислорода участвует только в одной Н – связи. Цепочка может состоять из 2,3,4,…,рмолекул RОН. Число р в принципе не ограничено. Ассоциаты могут иметь различные конформации за счет ''внутреннего вращения'' вокруг связей О – Н…О. Переход от одной конформации к другой в ходе теплового движения молекул в данном случае происходит, как правило, с разрывом Н – связей, следовательно, не так, как в полиэтилене и других полимерах, образованных за счет сильных химических связей. Но итог одинаков – наряду с трансконформацией ассоциата существует множество свернутых конформаций. Цепочечные разветвленные ассоциаты алканолов (ROH)p Присутствие второй, не поделенной пары электронов у атомов кислорода в спиртах, может приводить к возникновению разветвленных ассоциатов. Эти ассоциаты имеют большее число свободных концевых групп ОН, равное числу ответвлений в цепочке. Те кислородные атомы, которые одновременно участвуют в двух водородных связях, что и приводит к разветвлению цепочки, сохраняют способность выполнять ''шарнирные скачки'', сопровождающиеся изменением ориентации соответствующей группы OR. Но в отличие от неразветвленных участков здесь ''шарнирный переход'' требует одновременного разрыва двух Н – связей и после восстановления одной из них сопровождается исчезновением разветвления. Такие переходы приводят к частичному распаду разветвленного ассоциата и потому не входят в группу конформационных превращений.  Кольцевые ассоциаты могут быть неразветвленными и разветвленными. Неразветвленные кольцевые ассоциаты (ROH)p не имеют свободных гидроксильных групп. Разветвленные кольцевые ассоциаты при большом числе ответвлений от кольца могут образовывать кустовые ассоциаты.  В любом жидком одноатомном алканоле могут присутствовать все перечисленные ассоциаты, возникающие за счет связей ^ О – Н…О. Кроме того, существует множество менее устойчивых ассоциатов, образованных с помощью связей С – Н…О и С – Н…С. Наиболее доступны исследованию ассоциаты, удовлетворяющие следующим условиям. Связи, благодаря которым они возникают, более прочны, чем все другие типы связей между молекулами, возможные в данной жидкой фазе. Так, в спиртах связи О – Н…О значительно прочнее, чем связи С – Н…О и C - Н…С. Присутствие более слабых связей на фоне относительно сильных связей обычно остается незамеченным. Исследование ассоциатов существенно облегчается, если их строение простое, а другие структуры за счет тех же связей отсутствуют или же играют второстепенную роль. В нормальных одноатомных алканолах ROH основной тип ассоциатов – неразветвленные цепочки. Другие типы ассоциатов за счет связей О – Н…О могут быть, но их концентрация мала, их влиянием на свойства алканолов при современной точности эксперимента можно пренебречь. Принципиальные трудности возникают, когда речь идет об ассоциатах, представляющих собой двух или трехмерные сетки, похожие на те, которые наблюдаются в стеклах. Само понятие об ассоциатах как фрагментах макромолекул в этом случае теряет смысл, потому что пространственная сетка, в сущности, не имеет границ. Выделение в пространственной сетке отдельных фрагментов и описание их как относительно независимых конструкций представляет собой более грубое приближение, чем в тех случаях, когда можно отвлечься от существования сетчатых структур. В любой жидкой фазе пространственные сетки молекул существуют всегда. Каждый образец жидкости – гигантская макромолекула. Речь идет о возможности приближенного подразделения пространственных структур на относительно независимые простые фрагменты. Наконец, изучение ассоциатов становится на много более сложным, если молекулы могут образовывать друг с другом несколько одинаковых связей, например С – Н…С, приобретая при этом разные взаимные ориентации. Если вероятность возникновения димеров, тримеров и так далее со многими различными взаимными ориентациями мономерных звеньев приблизительно одинакова, то подобные ассоциаты для большинства современных методов исследования выглядят как хаотические, бесструктурные, неупорядоченные, неассоциированные системы. Именно эта особенность объясняет то, что ассоциация четыреххлористого углерода, алканов и некоторых других жидкостей до недавних пор не обнаруживалась. ^ Глава 3. Кластеры в жидкостях Для описания жидкого состояния наиболее полную картину кластерной динамики предложил Стюарт. По Стюарту, жидкость состоит из очень маленьких кристаллов (сиботаксических групп), представляющих собой агрегат из нескольких десятков или сотен молекул, которые неустойчивы и непрерывно меняют свое положение. Комплексы распадаются и образуются вновь так, что вполне определенная молекула непрерывно меняет группы и входит в состав все новых и новых конгломератов. Сиботаксические группы Стюарт рассматривал, как не резко очерченные области, переходящие непрерывным образом одна в другую. В пределах сиботаксических областей относительное расположение частиц и их относительная ориентация сохраняют достаточную степень правильности. К этому же времени относятся работы Данилова по рентгеноструктурному исследованию жидкостей, который доказал наличие в них ближнего порядка. Не подвергал сомнению реальное существование кластеров Френкель. Он полагал, что у веществ с вытянутой стержнеобразной формой между кристаллическим и обычным жидким состояниями наблюдается промежуточное жидкокристаллическое или анизотропно – жидкое состояние. При этом ориентационный порядок сохраняется в макроскопически малых областях, которые, по Орнштейну, называются роями. Ориентационно - упорядоченные области, но значительно меньших размеров, существуют в обычном аморфно – жидком состоянии, которые Стюарт обозначил как сиботаксические области. В случае анизотропных жидкостей рои при отсутствии внешних воздействий сохраняют неизменную структуру, то есть представляют собой термодинамически устойчивые образования. Сиботаксические области отличаются от роев не только своими малыми размерами, но и флуктуационным характером образования и распада. Такого же мнения придерживается Уббелоде, который определил рои как кристаллизуемые кластеры и сиботаксические группы как антикристаллические кластеры. Кластеры устойчивы и могут находиться длительное время в изолированном состоянии. Есть основания полагать, что заряженные частицы стабилизируют кластеры. Поэтому можно подразделить кластеры на заряженные и не имеющие заряда – нейтральные кластеры. Процессы взаимодействия кластеров настолько деликатны, что зачастую не поддаются прямым измерениям. Любое воздействие на кластер в большинстве случаев должно приводить к его разрушению. 

Двойное лучепреломление

раздвоение световых лучей при прохождении через анизотропную среду (см. Анизотропия), происходящее вследствие зависимости показателя преломления среды от поляризации и ориентации волнового вектора относительно кристаллографических осей, то есть от направления распространения. Световая волна в анизотропном веществе распадается на две преломлённые волны (обыкновенную и необыкновенную), имеющие разную поляризацию и идущие в разных направлениях с различной скоростью.

*Смектические жидкие кристаллы  Название произошло от греческого «смегма», что означает «мыло», так как впервые жидкие кристаллы этого типа обнаружены в мылах. В смектических жидких кристаллах (этиловый эфир азоксибензойной кислоты, водные растворы мыл) концы молекул как бы закреплены в плоскостях, перпендикулярных продольным осям молекул. Дальний порядок в расположении поперечных осей и центров тяжести молекул также отсутствует. Смектические кристаллы характеризуются слоистым строением. Центры тяжести удлиненных молекул находятся в плоскостях, равноудаленных друг от друга. В каждом слое молекулы ориентированы параллельно за счет упругого дисперсного взаимодействия. В этих материалах, помимо ориентационной упорядоченности молекул, существует частичное упорядочение центров тяжести молекул: центры тяжести молекул организованы в слои, расстояние между которыми фиксированы. Слои молекул легко смещаются относительно друг друга, и смектики на ощупь мылоподобные. Текучесть обеспечивается взаимным скольжением смектических плоскостей, поэтому вязкость достаточно велика. Различают несколько смектических полиморфных модификаций: А, В и С. В смектике А длинные молекулярные оси перпендикулярны смектическим слоям. Внутри слоев имеется лишь ближний позиционный порядок. В смектике В внутри слоя имеется дальний позиционный порядок в расположении молекул. Фазы А и В оптически одноосны. В фазе С длинные оси молекул согласованно наклонены к смектическим плоскостям; такие жидкие кристаллы оптически двуосны. Кроме фаз А, В и С известно еще несколько разновидностей смектических структур.  Смектики — это наиболее обширный класс жидких кристаллов. Причем некоторые разновидности смектиков обладают сегнетоэлектрическими свойствами. Из-за высокой вязкости смектические кристаллы не получили широкого применения в технике.  Нематические жидкие кристаллы  Название происходит от греческого «нема» — нить. Нематические жидкие кристаллы (параазоксианизол, растворы синтетических полипептидов) характеризуются ориентацией продольных осей молекул вдоль некоторого направления, т. е. для них характерен дальний ориентацнонный порядок. Нити (дисинклинации) подвижны и хорошо заметны в естественном свете. Они являются местами разрыва оптической непрерывности среды, где ориентация удлиненных молекул резко изменяется. Молекулы таких веществ представляют собой образования со сравнительно большим молекулярным весом, причем их протяженность в длину гораздо больше, чем в поперечных направлениях. Длинные оси молекул ориентированы вдоль одного общего направления, называемого нематическим директором. Однако центры тяжести молекул расположены беспорядочно, так что возникает симметрия более низкого порядка, чем у смектических кристаллов. При таком строении вещества возможно взаимное скольжение молекул вдоль нематического директора. В нематическом состоянии не все молекулы имеют одинаковую ориентацию. Так как на разных участках директор ориентирован по-разному, в жидком кристалле появляются области с различными направлениями директора — домены. Однородно ориентированные слои нематика с осями молекул, параллельными поверхностям пластин, называют планарной текстурой. На границах раздела доменов меняется коэффициент преломления света, поэтому жидкие кристаллы выглядят мутными.  Важными характеристиками нематических жидких кристаллов являются оптическая и диэлектрическая анизотропия. По электрическим свойствам нематические жидкие кристаллы относятся к группе полярных диэлектриков с невысоким удельным сопротивлением. Упорядоченность в ориентации поперечных осей молекул и в расположении их центров тяжести отсутствует. Это обеспечивает свободу поступательных перемещений молекул. Поэтому вязкость вещества в нематической фазе лишь незначительно отличается от вязкости в аморфно-жидком состоянии.  Холестерические жидкие кристаллы  Жидкие кристаллы холестерического типа дают производные холестерина (см. ХОЛЕСТЕРИН), например, холестерилциннамат, пропиловый эфир холестерина, и ряд других веществ. Молекулы холестерических жидких кристаллов имеют форму продолговатых пластинок, расположенных параллельно друг другу. Холестерические жидкие кристаллы являются разновидностью нематических жидких кристаллов, но в них отсутствует координационный дальний порядок. Текучесть вещества обеспечивается поступательным перемещением и вращением молекул в их плоскости. Директоры соседних молекул смещены относительно друг друга, в результате чего образуется холестерическая спираль — слоистая винтовая структура с шагом спирали L порядка 300 нм. Т. е. вся структура дополнительно закручена вокруг оси винта, перпендикулярной молекулярным осям. Такая фаза ведет себя по отношению к падающему излучению подобно интерференционному фильтру: световые лучи испытывают селективные отражения. Явление во многом аналогично дифракции рентгеновских лучей (см.ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ) на кристаллических решетках твердых тел. Однако масштабы здесь совсем иные: поскольку периоды холестерической спирали составляют сотни нанометров, длины волн, удовлетворяющих условию Вульфа-Брэгга (см. БРЭГГА-ВУЛЬФА УСЛОВИЕ), соответствуют видимой области спектра. Если плоский слой холестерического жидкого кристалла освещать белым светом, то в отраженном состоянии он будет казаться окрашенным, причем окраска может изменяться в зависимости от угла наблюдения и от температуры. Изменения цвета текстуры при изменении температуры называют термохромным эффектом.  Своеобразная молекулярная структура холестерических жидких кристаллов обусловливает их уникальные оптические свойства. Шаг винтовой спирали сильно зависит от внешних воздействий: при изменении, например, температуры, изменяется расстояние между молекулярными слоями, соответственно изменяется длина волны максимального рассеяния при заданном угле наблюдения. В результате получается цветовой термометр, который нашел различные применения. Холестерические жидкие кристаллы обладают весьма большой оптической активностью, на два-три порядка превышающей оптическую активность органических жидкостей и твердых кристаллов, и резко изменяют окраску при изменении температуры среды на десятые доли градуса, а также при изменении состава среды на доли процента.  Применение  Цветовые термоиндикаторы на жидких холестерических кристаллах успешно применяются для технической и медицинской диагностики. Их чувствительность к температуре дает возможность визуализации распределения температур на поверхности, что используется в интроскопии(см. ИНТРОСКОПИЯ), в медицине для диагностики ряда заболеваний, в различных температурных датчиках. Они позволяют легко получить картину теплового поля в виде цветовой диаграммы. Кроме того, холестерики могут использоваться для визуализации СВЧ полей. Эффект динамического рассеяния света также используется для изготовления индикаторов. Поскольку в индикаторах на жидких кристаллах используется окружающий свет, то потребляемая мощность значительно меньше, чем у других индикаторных устройств, и составляет 10-4 – 10-6 Вт/см2. Это на несколько порядков ниже, чем в светодиодах, порошковых и пленочных люминофорах, а также в газоразрядных индикаторах. На основе холестерических жидких кристаллов работают преобразователи инфракрасного изображения в видимое.  В отличие от нематика, динамическое рассеяние света в холестерике может обладать памятью. Рассеивающее свет состояние может сохраняться и после снятия поля. Время памяти зависит от конкретных свойств холестерика и может сохраняться от минут до нескольких лет. Приложение переменного напряжения переводит холестерик в исходное нерассеивающее состояние. Это свойство позволяет использовать холестерики для создания ячеек памяти.  Благодаря сильной зависимости свойств жидких кристаллов от внешних воздействий они находят разнообразное применение в технике (в температурных датчиках, индикаторных устройствах, модуляторах света и т. д.).  Жидкие кристаллы в биологии  Многим структурным образованиям живого организма свойственно жидкокристаллическое состояние. Структура жидких кристаллов оказалась удобной для биологических процессов. Она соединяет в себе устойчивость к внешним воздействиям с гибкостью и пластичностью.  Среди биоорганических веществ особенно распространены лиотропные жидкие кристаллы. Их образуют полипептиды, эфиры холестерина, цереброзиды, вирусы. Сложные биологически активные молекулы (например, ДНК (см. ДЕЗОКСИРИБОНУКЛЕИНОВЫЕ КИСЛОТЫ)) и даже макроскопические тела (например, вирусы) также могут находиться в жидкокристаллическом состоянии. Жидкие кристаллы играют важную роль в ряде механизмов жизнедеятельности человеческого организма. Некоторые болезни (атеросклероз, желчнокаменная болезнь), связанные с появлением в организме твердых кристаллов, проходят через стадию возникновения жидкокристаллического состояния.

ФАЗОВЫЕ ПЕРЕХОДЫ

Переходы между фазами в жидких кристаллах в течение многих лет привлекают интерес физиков. Как известно, равновесное состояние однородного тела определяется заданием двух термодинамических параметров, например объема V и температуры T. Из эксперимента известно, что в некоторых случаях термодинамическому равновесию соответствует неоднородное состояние системы, при котором она распадается на несколько однородных частей, например на жидкость и твердое тело или жидкость и газ. Такие однородные части называются фазами, а их равновесное сосуществование - фазовым равновесием.

Переходы между фазами носят название фазовых переходов. Существуют фазовые переходы I и II рода. Типичным фазовым переходом I рода является переход жидкость - твердое тело. При этом фазовом переходе выделяется или поглощается тепло, скачком меняется плотность, система допускает перегрев или переохлаждение, образуя так называемые метастабильные состояния шириной до десятков градусов. Этот фазовый переход происходит скачком, то есть в системе не наблюдается никаких предпереходных явлений. Это означает, например, что если лед плавится при 0?C, то даже за тысячную долю градуса до точки плавления экспериментально не обнаруживается никаких признаков фазового перехода.

К фазовым переходам II рода относят, например, переход парамагнетик - ферромагнетик или критическую точку жидкость - газ. Они не требуют теплоты перехода и не допускают метастабильных состояний, то есть перегретых ферромагнетиков не бывает. Термодинамические параметры, такие, как плотность, при этом фазовом переходе меняются непрерывно.

При описании фазового перехода II рода вводится параметр порядка. Для ферромагнетиков это магнитный момент единицы объема, для расслаивающихся растворов - концентрация, для сегнетоэлектриков - дипольный момент единицы объема и т.д. Выше точки фазового перехода среднее значение параметра порядка равно нулю, а ниже точки перехода отлично от нуля, причем его изменение происходит непрерывно, без скачков.

Одной из особенностей фазовых переходов второго рода является сильный рост флуктуаций параметра порядка в широком интервале температур. Поэтому они проявляются далеко от точки перехода, иногда за несколько десятков градусов. По мере приближения к точке перехода флуктуации параметры порядка стремятся к бесконечности, причем их значения в разных точках системы не независимы. Это означает, что если в какой-либо точке параметр порядка отклонился в какую-то сторону, например увеличился, то в некоторой окрестности этой точки параметр порядка отклонился в ту же сторону. Размер области, в которой проявляется такая связь, называется радиусом корреляции.

Для совершенно различных физических систем в окрестности фазового перехода II рода проявляется универсальность поведения среднего значения параметра порядка, радиуса корреляции, восприимчивости по отношению к внешнему полю, теплоемкости. Все эти величины меняются с температурой или при изменении внешнего поля по степенным законам. Причем между показателями степени, или критическими индексами, существуют одни и те же уравнения связи. Кроме того, для многих типов фазовых переходов II рода эти критические индексы одинаковы.

В жидких кристаллах фазовые переходы часто имеют промежуточный характер, обладая чертами фазовых переходов I и II родов. К таким переходам относятся фазовые переходы изотропная фаза - нематик (I - N переход) и изотропная фаза - холестерик, или изотропная - голубые фазы. Особенно подробно изучен I - N переход.

Этот фазовый переход сопровождается выделением тепла, но теплота перехода примерно в 100 раз меньше, чем при переходе газ - жидкость, скачок плотности ничтожно мал, и ширина метастабильной области обычно не превышает одного градуса. Эта система в широком интервале температур ведет себя так, как при фазовом переходе II рода, а затем скачком переходит в новую фазу, как при фазовом переходе I рода. На рис. 2 схематически показана температурная зависимость параметра порядка S при переходе изотропная жидкость - нематик. Здесь Tc - температура фазового перехода, T ** определяет границу существования нематической фазы, T * - граничная температура для изотропной фазы.

Тип перехода нематик - смектик остается предметом дискуссии. Проведенные в последние годы тщательные измерения позволили установить, что его можно отнести к фазовым переходам II рода. Однако до конца этот вопрос не решен, поскольку при фазовом переходе нематик - смектик не наблюдается универсальной температурной зависимости параметров, описывающих этот фазовый переход.

При изучении фазовых переходов область существования той или иной фазы определяется не только температурой, но и составом жидкого кристалла. Поэтому часто изучают жидкокристаллические смеси. На рис. 3 показана фазовая диаграмма для смеси жидких кристаллов, которые в классификационных справочниках называют , где 1 - x и x - концентрации компонент. Здесь видно, что с изменением концентрации x можно изменить ширину существования области смектика А, сведя ее практически к нулю. В этой точке, обозначенной цифрой 1, граничат сразу три фазы: нематик N, смектик А и смектик С. В физике жидких кристаллов она называется NAC-точкой.

ФЛУКТУАЦИИ В ЖИДКИХ КРИСТАЛЛАХ

Физические величины, описывающие состояние системы, такие, как плотность, энергия и т.д., с большой степенью точности равны своим средним значениям. Однако вследствие теплового движения существуют малые отклонения от средних значений, которые называют флуктуациями. Обычно флуктуации очень малы и их можно не принимать во внимание. Однако в некоторых случаях они велики и их роль становится даже определяющей.

В качестве величины, характеризующей уровень флуктуаций, используют средний квадрат отклонения от среднего значения. Например, если у нас есть случайная величина а, то ее флуктуация равна Da = a - бa с, где бa с - среднее значение. Из определения величины Da следует, что ее среднее равно нулю, а средний квадрат имеет вид

б(Da)2 с = б(a - бa с)2 с = бa2 с - 2бa сбa с + бa с2 = бa2 с - бa с2.

Усреднение можно проводить, например, путем измерения величины a в разные моменты времени или измеряя эту величину в разных точках пространства.