Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛК1.9 Молек.-кинет. теория.doc
Скачиваний:
7
Добавлен:
23.03.2015
Размер:
137.73 Кб
Скачать

Механическая теория тепла и атомистика

Физики начали осознавать, что открытие закона сохранения энергии дает возможность построить единую физическую картину мира. Поскольку все формы энергии оказалось возможным измерить в единой мере, в единицах механической работы, считалось возможным свести все физические процессы к механическим движениям, построить механическую картину мира. Первым шагом в этом направлении явилось создание механической теории теплоты.

Атомно-молекулярное учение о материи сопутствовало физическим и химическим исследованиям на всем протяжении истории науки, начиная с Левкиппа и Демокрита. Оно то подавлялось и отходило на задний план, то вновь воскрешалось и вело мысль исследователя. Со времен Бойля оно стало служить химии и было положено Ломоносовым в основу учения о химических превращениях. Начало XIX в. ознаменовалось важными открытиями, стимулировавшими развитие химической атомистики. Это было открытие закона постоянства состава и закона кратных отношений. Закон постоянства состава был высказан еще в 1801 г. французским химиком Прустом (1754—1826). В противовес мнению другого французского химика—Бертолле (1748— 1822), учившего, что состав вещества изменяется непрерывно, Пруст утверждал, что процентное содержание компонент сложных веществ изменяется скачком. Спор с Бертолле продолжался восемь лет и закончился победой Пруста.

Закон постоянства состава и скачкообразное изменение весового содержания компонентов в различных соединениях простых веществ подсказывают идею о неизменяемых мельчайших частичках вещества, вступающих во взаимодействие друг с другом в сложных соединениях. Эта мысль была высказана и подробно обоснована английским химиком Джоном Дальтоном (1766 – 1844)

Дальтону принадлежат фундаментальные исследования смесей газов и паров, в результате которых он вывел названный его именем закон независимости парциальных давлений компонентов смеси (1801—1802). В 1802 г. за несколько месяцев до Гей-Люссака он установил закон теплового расширения газов. В 1803 г. Дальтон, руководствуясь атомистической гипотезой, вывел закон кратных отношений и доказал его на примере углеводородных соединений — метана и этилена.

Дальтон ввел в химию фундаментальное понятие атомного веса и, приняв за единицу атомного веса вес атома водорода, определил атомные веса некоторых элементов. Дальтон первым составил таблицу атомных весов и ввел химическую символику, замененную в химии более удобной символикой Берцелиуса (1779-1848).

Как нередко бывает в истории науки, открытия, легшие в основу современной химии, делались независимо и почти одновременно многими исследователями. К открытию атомного веса подходил немецкий химик Иеремия Рихтер (1762—1807). Закон расширения газов был установлен независимо от Дальтона в 1802 г. французским физиком и химиком Жозефом Луи Гей-Люссаком (1778—1850).

В 1811 г. итальянский физик и химик Амедео Авогадро (1776-1856), развивая атомно-молекулярную теорию, установил закон, ныне носящий его имя: при одинаковых условиях температуры и давления в равных объемах газов содержится одинаковое количество молекул.

Дальтон, Берцелиус и другие видные химики не приняли теорию Авогадро и задержали развитие химической атомистики до 60-х годов XIX в., когда Же-рар (1816—1856) подтвердил закон Авогадро новыми опытными данными и поддержанная итальянским химиком Канниццаро (1826—1910) атомно-молекулярная теория прочно вошла в химию. Утверждение атомной теории в химии соответствовало ее применению в физике, когда открытие закона сохранения энергии воскресило представление о теплоте как о форме движения. Это представление, высказанное в 1620 г. в смутной форме Ф. Бэконом, развитое в 1743—17,45 гг. М.В.Ломоносовым, было вновь высказано одним из основателей закона сохранения и превращения энергии — Джемсом Джоулем в докладе «Некоторые замечания о теплоте и о строении упругих жидкоcтей», сделанном на заседании Манчестерского литературного и философского общества 3 октября 1848 г. Доклад был опубликован только через три года в трудах общества и затем через шесть лет в «Philosophical Magazine»

Джоуль приводит подсчет скорости движения частиц водорода, находящегося при определенной температуре и давлении

В 1857 г в «Анналах» Поггендорфа была напечатана статья Клаузиуса «О роде движения, который мы называем теплотой «Перепечатывая эту статью в третьем томе своей «Механической теории тепла», Клаузиус дополнил ее исторической справкой, в которой упомянул о Джоуле, переиздавшем свою статью 1848 г. согласно пожеланию Клаузиуса в 1857 г., а также о работе Крёнига «Очерки теории газов», опубликованной в «Анналах» Поггендорфа в 1856 г. В этой справке Клаузиус называет длинный ряд имен, начиная с Лукреция, Гассенди, Бойля и Даниила Бернулли. Ломоносова он, однако, не упоминает, его работы, опубликованные в «Новых Комментариях» Петербургской Академии наук, были к тому времени уже забыты. Сам Клаузиус сознается, что к его списку, «вероятно, можно будет прибавить еще и ряд других авторов», но он «не читал более старых авторов». Так или иначе, но имя Ломоносова в период торжества его идей не упоминалось.

Клаузиус подчеркивает, что его термодинамические исследования не связаны с какими-либо представлениями о тепловом движении. Все сделанные в первой части «Механической теории тепла» выводы «основываются на некоторых общих законах, которые можно признать правильными, не делая никаких определенных предположений о природе теплоты». Эта общность термодинамических методов, впервые четко констатированная Клаузиусом, делает термодинамику чрезвычайно мощным инструментом исследования, применимым во всех областях физической науки. Вместе с тем Клаузиус признает, что его исследования «не были свободны от мысли о некоторой гипотезе» и что он «уже в начале своих работ, относящихся к теплоте..., попытался разобраться во внутреннем состоянии движения нагретого тела и составил себе об этом некоторое представление...».

Это признание Клаузиуса очень важно. Еще до опубликования первой своей работы он руководствовался молекулярно-кинетической гипотезой, она помогала ему выработать основные понятия и принципы теории теплоты. Термодинамике специальная гипотеза о природе теплоты не нужна, но создателю термодинамики она была необходима

Клаузиус излагает основные представления новой теории газов, которую он называет «кинетической». Молекулы газа движутся прямолинейно с постоянной скоростью, которая изменяется в процессе столкновения с другими молекулами или с непроницаемой стенкой. При этом «живая сила их движений в среднем сохраняет ту же величину, какую она имела до столкновения». Давление газа объясняется ударами молекул о непроницаемую стенку. Наряду с поступательным движением Клаузиус допускает и вращательное, а также некоторое колебательное движение внутри отдельных частичек.

Наличие этих внутренних движений приводит к тому, что отдельные молекулы между собой и с молекулами стенки взаимодействуют не упруго. В среднем же установившемся состоянии поступательное движение молекул не изменяется под влиянием движения частей молекул, и «при исследовании совокупного действия большого количества молекул можно пренебречь неправильностями, имеющими место при отдельных столкновениях, и полагать, что по отношению к поступательному двиясению молекулы следуют общим законам упругости». При этом Клаузиус считает, что поступательное движение каждой молекулы в среднем находится в постоянном отношении к движению ее составных частей.

Еще в 1857 г. Клаузиус вывел основную формулу кинетической теории газов, согласно которой давление газа равно двум третям средней кинетической энергии всех молекул в единице объема.

Как видим, Клаузиус ясно представлял себе сложность процесса столкновения молекул и атомов и определяющую роль движений их структурных элементов. Но для большого числа молекул в среднем дело обстоит так, как если бы молекулы отражались после удара о стенку «согласно тем же законам, что и упругие шары от неподвижной стенки». Таким образом, механизм упругого удара, обусловливающий давление газа, получается, по Клаузиусу, в результате усреднения, когда «можно принять, что после отражения молекулы в среднем обладают той же самой живой силой, какую они имели в момент налета, и что среди отраженных молекул все направления движений по отношению к стенке представлены совершенно так же, как были представлены направления движений налетевших на стенку молекул». Если сделать такое допущение, то, указывает Клаузиус, «при определении давления совершенно безразлично, если вместо среднего лишь равенства допустить существование равенства при каждом отдельном ударе». При обычном, школьном выводе просто предполагается, что молекула сталкивается со стенкой по законам упругого удара, и таким образом игнорируется тот сложный путь, который привел Клаузиуса к этому допущению.

Вторым допущением Клаузиуса является гипотеза идеального (совершенного) газа: во-первых, молекулы газа «настолько малы, что их объемом можно пренебречь по сравнению с объемом, занимаемым всем газом, и, во-вторых, молекулы проявляют силы взаимодействия, лишь находясь в непосредственной близости друг от друга». Кроме того, при подсчете давления Кяаузиус делает мимоходом предположение, что молекулы газа «движутся во всех возможных направлениях, так что любое направление столь же вероятно, как и все прочие». Это гипотеза молекулярного хаоса. При вычислении давления Клаузиус использует второй и третий законы Ньютона, а так как к тому же от столкновения до столкновения молекулы, по предположению, движутся равномерно и прямолинейно по закону инерции, то, очевидно, Клаузиус принимает, что к молекулам и атомам применимы законы Ньютона, законы классической механики.