Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

electrodynamics / Classical Electrodynamics for Undergraduates - H. Norbury

.pdf
Скачиваний:
24
Добавлен:
19.03.2015
Размер:
707.19 Кб
Скачать

40

CHAPTER 2. VECTORS

Let dlr and dlµ be inØnitessimal increments of length obtained when moving in the e^r and e^µ directions respectively. From Fig. 2.9 we have

dlr = dr

(2.64)

and

 

dlµ = rdµ

(2.65)

as shown in Fig. 2.11. The inØnitessimal displacement vector is then

 

dl = dlre^r + dlµe^µ = dre^r + rdµe^µ

(2.66)

The circumference of a circle (for which plane polar coordinates are eminently appropriate) is given by R dlµ = R 20ºrdµ = 2ºr. The inØnitessimal area element (magnitude only) is

 

dA ¥ dlrdlµ = rdrdµ

 

 

 

(2.67)

so that the area of a circle is

 

R

2º

1 2

 

R dlrdlµ = R

0 rdrR

 

 

 

ºR2.

R dA =

0

= (2 R )(2º) =

2.8.4Spherical (3-dimensional) Polar Coordinates

This coordinate system is speciØed by (r; µ; ¡) and unit vectors (^er; e^µ; e^¡) shown in Fig. 2.12. In order to sweep out a sphere ¡ varies from 0 to 2º, but µ now only varies from 0 to º. (Note that e^µ points 'down' whereas for plane polar coordinates it pointed 'up'.) Again the basis vectors move as point P moves. The relation between polar and rectangular coordinates is obtained from Fig. 2.13 as

x = r sin µ cos ¡

 

 

 

y = r sin µ sin ¡

 

 

 

z = r cos µ

 

 

(2.68)

where r2 = x2 + y2 + z2. The unit vectors are related by

 

^

^

^

 

e^r = sin µ cos ¡i + sin µ sin ¡j + cos µk

 

^

^

^

 

e^µ = cos µ cos ¡i + cos µ sin ¡j

° sin µk

 

 

^

^

(2.69)

e^¡ = ° sin ¡i + cos ¡j

2.8. CURVILINEAR COORDINATES

or

01 0

 

e^r

C

 

B

cos µ cos ¡

cos µ sin ¡

B e^¡

=

 

sin ¡

cos ¡

@

e^µ

A

@

sin µ cos ¡

sin µ sin ¡

 

 

°

 

 

 

 

 

 

 

41

° sin µ

 

^

 

 

 

C B

i

C

 

 

cos µ

^j

:

(2.70)

1 0

1

0

A @

^

A

 

 

 

k

 

 

 

(do Problem 2.13) Any vector A is written as A = Are^r + Aµe^µ + A¡e^¡. Let dlr; dlµ; dl¡ be inØnitessimal increments of length obtained when moving in the e^r; e^µ and e^¡ directions respectively. Clearly

dlr = dr

(2.71)

and

 

dlµ = rdµ

(2.72)

but

 

dl¡ = r sin µd¡

(2.73)

which can be seen from Fig. 2.14. The inØnitessimal displacement vector is then

dl = dlre^r + dlµe^µ + dl¡e^¡ = dre^r + rdµe^µ + r sin µd¡e^¡

(2.74)

There are three inØnitessimal area elements that we can form, namely dA0 = dlrdlµ = rdrdµ (variable r) or dA00 = dlrdl¡ = r2 sin µdrd¡ (variable r) and

the one which has Øxed r and gives the area patch on the surface of a sphere

 

 

dA = dlµdl¡ = r2 sin µdµd¡:

 

(2.75)

Thus the surface area of a sphere is dA =

dlµdl¡ = R2

0º sin µdµ

02º=

4ºR2

. The inØnitessimal volume

element is

R

R

R

 

R

 

 

= dlrdlµdl¡ = r2 sin µdrdµd¡:

R

(2.76)

= 34 ºR3.

R

R

R

R

so that the volume of a sphere is

= dlrdlµdl¡ = 0Rr2dr 0º sin µdµ 02º

2.8.5Cylindrical (3-dimensional) Polar Coordinates

^

These coordinates speciØed by ( ; ¡; z) and (^e ; e^¡; k) are shown in Fig 2.15. It is worthwhile to note that for a Øxed slice in z, cylindrical polar coordinates are identical to plane polar coordinates. The angle µ and radius r used in plane polar coordinates is replaced by angle ¡ and radius in cylindrical

42

CHAPTER 2. VECTORS

polar coordinates. In other words cylindrical polar coordinates are just plane polar coordinates with a z axis tacked on. The relation between cylindrical polar coordinates and rectangular coordinates is thus

x = cos ¡

 

y = sin ¡

 

z = z

(2.77)

the Ørst two of which are analagous to equation (2.57). Unit vectors are related by

^

^

 

e^ = cos ¡i + sin ¡j

 

^

^

 

e^¡ = ° sin ¡i + cos ¡j

 

 

^

(2.78)

 

e^z = k

again the Ørst two of which are just equation (2.63). Any vector is

 

A = A e^ + A¡e^¡ + Aze^z:

(2.79)

Note that for spherical polar coordinates the position vector of point P is r = re^r and for plane polar coordinates r = re^r also. However in cylindrical polar coordinates we have

r = e^ + ze^z

(2.80)

as can be seen from Fig. 2.15. The inØnitessimal elements of length are

dl = d

(2.81)

dl¡ =

(2.82)

and

 

dlz = dz

(2.83)

where (2.81) and (2.82) are the same as (2.64) and (2.65). The inØnitessimal displacement vector is

dl = dl e^ + dl¡e^¡ + dlze^z = d e^ + d¡e^¡ + dze^z

(2.84)

to be compared to (2.66). Exercise: derive the formula for the volume of a cylinder.

2.9. SUMMARY

43

2.8.6Div, Grad and Curl in Curvilinear Coordinates

See Gri±ths.

(to be written up later)

2.9Summary

44

CHAPTER 2. VECTORS

2.10Problems

2.1a) Vector C points out of the page and D points to the right in the same plane. What is the direction of C £ D and D £ C ?

b) B points to the left and A points down the page. What is the direction of B £ A and A £ B ?

2.2 a) Write down the values of the following Kronecker delta symbols: ±11; ±12; ±33; ±13.

b) Write down the values of the following Levi-Civita symbols:

111, 121, 312, 132.

2.3Show that (A £ B)z = AxBy ° AyBx.

2.4Show that the determinant formula (2.23) gives the same results as (2.22).

2.5Show that (2.24) is true for the following values of indices:

a)i = 1; j = 1; l = 1; m = 1,

b)i = 3; j = 1; l = 1; m = 3.

2.6 Prove the following vector identities:

a)A:(B £ C) = B:(C £ A) = C:(A £ B)

b)A:(B £ C) = °B:(A £ C)

c)A £ (B £ C) = B(A:C) ° C(A:B)

d)(A £ B):(C £ D) = (A:C)(B:D) ° (A:D)(B:C)

e)A £ [B £ (C £ D)] = B[A:(C £ D)] ° (A:B)(C £ D).

2.7Calculate the gradient of f(x; y; z) = x + yz2.

° ^ ^

2.8 Calculate the divergence of C = yi + xj and interpret your result.

2.10. PROBLEMS

45

^

2.9 Calculate the curl of B = j and interpret your result.

2.10 Let f = xy2 and a = (0; 0; 0) and b = (1; 1; 0). Evaluate R ba5f:dl along two diÆerent integration paths and show that the results are the same.

2.11 Check the fundamental theorm of gradients using the function and end points of Problem 2.10.

^

2^

^

2.12 Check Gauss' divergence theorem using C = xzi+y

j +yzk

using the unit cube with a corner at the origin as shown in Fig. 2.6.

2.13 Prove equation (2.69) or (2.70).

46

CHAPTER 2. VECTORS

2.11Answers

2.1a) C £ D points up the page and D £ C points down the page.

b) B£A points out of the page and A£B points into the page.

2.2 a) 1, 0, 1, 0. b) 0, 0, +1, -1.

^2^ ^

2.7i + z j + 2yzk.

2.80

2.90

2.101

2.12. SOLUTIONS

47

2.12Solutions

2.1a) C £ D points up the page and D £ C points down the page.

b) B£A points out of the page and A£B points into the page.

2.2 a) 1, 0, 1, 0.

b) 0, 0, +1, -1.

2.3 From (2.20) A £ B = ijkAiBje^k. Therefore the kth component is (A £ B)k = ijkAiBj. Thus (A £ B)3 = ij3AiBj =1j3A1Bj + 2j3A2Bj + 3j3A3Bj. Now 3j3 = 0 for all values of j and in the Ørst two terms the only non-zero values

will be j = 2 and j =

1

respectively.

Realizing

this

saves

us from writing out all

the

terms in the

sum over

j.

Thus

(A £ B)3 = 123A1B2 + 213A2B1 = A1B2 ° A2B1 meaning that

(A £ B)z = AxBy ° AyBx.

2.4

A

£

B =

Ø

A1

A2

A3

Ø

 

 

Ø

e^1

e^2

e^3

Ø

 

 

 

Ø

B1

B2

B3

Ø

 

 

 

Ø

 

 

 

Ø

 

 

 

Ø

 

 

 

Ø

 

 

 

Ø

 

 

 

Ø

 

 

 

Ø

 

 

 

Ø

= e^1A2B3 + e^2A3B1 + e^3A1B2 °e^3A1B2 ° e^2A1B3 ° e^1A3B2 = (A2B3 ° A3B2)^e1 + (A3B1 ° A1B3)^e2 +(A1B2 ° A2B1)^e3:

48

CHAPTER 2. VECTORS

2.5 kij klm = ±il±jm ° ±im±jl

a) The left hand side is

kij klm = k11 k11

=111 111 + 211 211 + 311 311

=(0)(0) + (0)(0) + (0)(0)

=0:

The right hand side is ±11±11 °±11±11 = (1)(1)°(1)(1) = 1°1 = 0 b) The left hand side is

kij klm = k31 k13

=131 113 + 231 213 + 331 313

=(0)(0) + (+1)(°1) + (0)(0)

=0 ° 1 + 0 = °1:

The right hand side is ±31±13 ° ±33±11 = (0)(0) ° (1)(1) = °1

2.12. SOLUTIONS

49

2.6

a)

A:(B £ C) = Ak(B £ C)k = Ak ijkBiCj = Bi ijkCjAk = Bi jkiCjAk = Bi(C £ A)i = B:(C £ A)

Also this is

= Cj ijkAkBi = Cj kijAkBi = Cj(A £ B)j = C:(A £ B):

b)

A:(B £ C) = Ak(B £ C)k = Ak ijkBiCj

=Bi ijkAkCj = Bi jkiAkCj = °Bi kjiAkCj

=°Bi(A £ C)i = °B:(A £ C):

c)

A£ (B £ C) = ijkAi(B £ C)je^k = ijkAi jlmBlCme^k

=ijk jlmAiBlCme^k = ° ikj jlmAiBlCme^k

=°(±il±km ° ±im±kl)AiBlCme^k

=°AiBiCke^k + AiBkCie^k

= °C(A:B) + B(A:C):

d)

(A £ B):(C £ D) = (A £ B)k(C £ D)k

=ijkAiBj lmkClDm

=ijk lmkAiBjClDm

=kij klmAiBjClDm

=(±il±jm ° ±im±jl)AiBjClDm

=AiBjCiDj ° AiBjCjDi

=(A:C)(B:D) ° (A:D)(B:C):

e)

A £ [B £ (C £ D)] = ijkAi[B £ (C £ D)]je^k