 
        
        electrodynamics / Classical Electrodynamics for Undergraduates - H. Norbury
.pdf| 40 | CHAPTER 2. VECTORS | 
Let dlr and dlµ be inØnitessimal increments of length obtained when moving in the e^r and e^µ directions respectively. From Fig. 2.9 we have
| dlr = dr | (2.64) | 
| and | 
 | 
| dlµ = rdµ | (2.65) | 
| as shown in Fig. 2.11. The inØnitessimal displacement vector is then | 
 | 
| dl = dlre^r + dlµe^µ = dre^r + rdµe^µ | (2.66) | 
The circumference of a circle (for which plane polar coordinates are eminently appropriate) is given by R dlµ = R 20ºrdµ = 2ºr. The inØnitessimal area element (magnitude only) is
| 
 | dA ¥ dlrdlµ = rdrdµ | 
 | 
 | 
 | (2.67) | |
| so that the area of a circle is | 
 | R | 2º | 1 2 | 
 | |
| R dlrdlµ = R | 0 rdrR | 
 | 
 | 
 | ||
| ºR2. | R dA = | 0 | dµ = (2 R )(2º) = | |||
2.8.4Spherical (3-dimensional) Polar Coordinates
This coordinate system is speciØed by (r; µ; ¡) and unit vectors (^er; e^µ; e^¡) shown in Fig. 2.12. In order to sweep out a sphere ¡ varies from 0 to 2º, but µ now only varies from 0 to º. (Note that e^µ points 'down' whereas for plane polar coordinates it pointed 'up'.) Again the basis vectors move as point P moves. The relation between polar and rectangular coordinates is obtained from Fig. 2.13 as
| x = r sin µ cos ¡ | 
 | 
 | 
 | 
| y = r sin µ sin ¡ | 
 | 
 | 
 | 
| z = r cos µ | 
 | 
 | (2.68) | 
| where r2 = x2 + y2 + z2. The unit vectors are related by | 
 | ||
| ^ | ^ | ^ | 
 | 
| e^r = sin µ cos ¡i + sin µ sin ¡j + cos µk | 
 | ||
| ^ | ^ | ^ | 
 | 
| e^µ = cos µ cos ¡i + cos µ sin ¡j | ° sin µk | 
 | |
| 
 | ^ | ^ | (2.69) | 
| e^¡ = ° sin ¡i + cos ¡j | |||
2.8. CURVILINEAR COORDINATES
or
01 0
| 
 | e^r | C | 
 | B | cos µ cos ¡ | cos µ sin ¡ | |
| B e^¡ | = | 
 | sin ¡ | cos ¡ | |||
| @ | e^µ | A | @ | sin µ cos ¡ | sin µ sin ¡ | ||
| 
 | 
 | ° | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 41 | |
| ° sin µ | 
 | ^ | 
 | 
 | 
 | |
| C B | i | C | 
 | 
 | ||
| cos µ | ^j | : | (2.70) | |||
| 1 0 | 1 | |||||
| 0 | A @ | ^ | A | 
 | 
 | |
| 
 | k | 
 | 
 | 
 | 
(do Problem 2.13) Any vector A is written as A = Are^r + Aµe^µ + A¡e^¡. Let dlr; dlµ; dl¡ be inØnitessimal increments of length obtained when moving in the e^r; e^µ and e^¡ directions respectively. Clearly
| dlr = dr | (2.71) | 
| and | 
 | 
| dlµ = rdµ | (2.72) | 
| but | 
 | 
| dl¡ = r sin µd¡ | (2.73) | 
which can be seen from Fig. 2.14. The inØnitessimal displacement vector is then
| dl = dlre^r + dlµe^µ + dl¡e^¡ = dre^r + rdµe^µ + r sin µd¡e^¡ | (2.74) | 
There are three inØnitessimal area elements that we can form, namely dA0 = dlrdlµ = rdrdµ (variable r) or dA00 = dlrdl¡ = r2 sin µdrd¡ (variable r) and
the one which has Øxed r and gives the area patch on the surface of a sphere
| 
 | 
 | dA = dlµdl¡ = r2 sin µdµd¡: | 
 | (2.75) | ||
| Thus the surface area of a sphere is dA = | dlµdl¡ = R2 | 0º sin µdµ | 02ºd¡ = | |||
| 4ºR2 | . The inØnitessimal volume | element is | R | R | R | |
| 
 | R | |||||
| 
 | 
 | dø = dlrdlµdl¡ = r2 sin µdrdµd¡: | R | (2.76) | ||
| = 34 ºR3. | R | R | R | R | ||
| so that the volume of a sphere is | dø = dlrdlµdl¡ = 0Rr2dr 0º sin µdµ 02ºd¡ | |||||
2.8.5Cylindrical (3-dimensional) Polar Coordinates
^
These coordinates speciØed by ( ; ¡; z) and (^e ; e^¡; k) are shown in Fig 2.15. It is worthwhile to note that for a Øxed slice in z, cylindrical polar coordinates are identical to plane polar coordinates. The angle µ and radius r used in plane polar coordinates is replaced by angle ¡ and radius in cylindrical
| 42 | CHAPTER 2. VECTORS | 
polar coordinates. In other words cylindrical polar coordinates are just plane polar coordinates with a z axis tacked on. The relation between cylindrical polar coordinates and rectangular coordinates is thus
| x = cos ¡ | 
 | 
| y = sin ¡ | 
 | 
| z = z | (2.77) | 
the Ørst two of which are analagous to equation (2.57). Unit vectors are related by
| ^ | ^ | 
 | 
| e^ = cos ¡i + sin ¡j | 
 | |
| ^ | ^ | 
 | 
| e^¡ = ° sin ¡i + cos ¡j | 
 | |
| 
 | ^ | (2.78) | 
| 
 | e^z = k | |
| again the Ørst two of which are just equation (2.63). Any vector is | 
 | |
| A = A e^ + A¡e^¡ + Aze^z: | (2.79) | |
Note that for spherical polar coordinates the position vector of point P is r = re^r and for plane polar coordinates r = re^r also. However in cylindrical polar coordinates we have
| r = e^ + ze^z | (2.80) | 
| as can be seen from Fig. 2.15. The inØnitessimal elements of length are | |
| dl = d | (2.81) | 
| dl¡ = d¡ | (2.82) | 
| and | 
 | 
| dlz = dz | (2.83) | 
where (2.81) and (2.82) are the same as (2.64) and (2.65). The inØnitessimal displacement vector is
| dl = dl e^ + dl¡e^¡ + dlze^z = d e^ + d¡e^¡ + dze^z | (2.84) | 
to be compared to (2.66). Exercise: derive the formula for the volume of a cylinder.
| 2.9. SUMMARY | 43 | 
2.8.6Div, Grad and Curl in Curvilinear Coordinates
See Gri±ths.
(to be written up later)
2.9Summary
| 44 | CHAPTER 2. VECTORS | 
2.10Problems
2.1a) Vector C points out of the page and D points to the right in the same plane. What is the direction of C £ D and D £ C ?
b) B points to the left and A points down the page. What is the direction of B £ A and A £ B ?
2.2 a) Write down the values of the following Kronecker delta symbols: ±11; ±12; ±33; ±13.
b) Write down the values of the following Levi-Civita symbols:
111, 121, 312, 132.
2.3Show that (A £ B)z = AxBy ° AyBx.
2.4Show that the determinant formula (2.23) gives the same results as (2.22).
2.5Show that (2.24) is true for the following values of indices:
a)i = 1; j = 1; l = 1; m = 1,
b)i = 3; j = 1; l = 1; m = 3.
2.6 Prove the following vector identities:
a)A:(B £ C) = B:(C £ A) = C:(A £ B)
b)A:(B £ C) = °B:(A £ C)
c)A £ (B £ C) = B(A:C) ° C(A:B)
d)(A £ B):(C £ D) = (A:C)(B:D) ° (A:D)(B:C)
e)A £ [B £ (C £ D)] = B[A:(C £ D)] ° (A:B)(C £ D).
2.7Calculate the gradient of f(x; y; z) = x + yz2.
° ^ ^
2.8 Calculate the divergence of C = yi + xj and interpret your result.
| 2.10. PROBLEMS | 45 | 
^
2.9 Calculate the curl of B = j and interpret your result.
2.10 Let f = xy2 and a = (0; 0; 0) and b = (1; 1; 0). Evaluate R ba5f:dl along two diÆerent integration paths and show that the results are the same.
2.11 Check the fundamental theorm of gradients using the function and end points of Problem 2.10.
| ^ | 2^ | ^ | 
| 2.12 Check Gauss' divergence theorem using C = xzi+y | j +yzk | |
using the unit cube with a corner at the origin as shown in Fig. 2.6.
2.13 Prove equation (2.69) or (2.70).
| 46 | CHAPTER 2. VECTORS | 
2.11Answers
2.1a) C £ D points up the page and D £ C points down the page.
b) B£A points out of the page and A£B points into the page.
2.2 a) 1, 0, 1, 0. b) 0, 0, +1, -1.
^2^ ^
2.7i + z j + 2yzk.
2.80
2.90
2.101
| 2.12. SOLUTIONS | 47 | 
2.12Solutions
2.1a) C £ D points up the page and D £ C points down the page.
b) B£A points out of the page and A£B points into the page.
2.2 a) 1, 0, 1, 0.
b) 0, 0, +1, -1.
2.3 From (2.20) A £ B = ijkAiBje^k. Therefore the kth component is (A £ B)k = ijkAiBj. Thus (A £ B)3 = ij3AiBj =1j3A1Bj + 2j3A2Bj + 3j3A3Bj. Now 3j3 = 0 for all values of j and in the Ørst two terms the only non-zero values
| will be j = 2 and j = | 1 | respectively. | Realizing | this | saves | 
| us from writing out all | the | terms in the | sum over | j. | Thus | 
(A £ B)3 = 123A1B2 + 213A2B1 = A1B2 ° A2B1 meaning that
(A £ B)z = AxBy ° AyBx.
2.4
| A | £ | B = | Ø | A1 | A2 | A3 | Ø | 
| 
 | 
 | Ø | e^1 | e^2 | e^3 | Ø | |
| 
 | 
 | 
 | Ø | B1 | B2 | B3 | Ø | 
| 
 | 
 | 
 | Ø | 
 | 
 | 
 | Ø | 
| 
 | 
 | 
 | Ø | 
 | 
 | 
 | Ø | 
| 
 | 
 | 
 | Ø | 
 | 
 | 
 | Ø | 
| 
 | 
 | 
 | Ø | 
 | 
 | 
 | Ø | 
= e^1A2B3 + e^2A3B1 + e^3A1B2 °e^3A1B2 ° e^2A1B3 ° e^1A3B2 = (A2B3 ° A3B2)^e1 + (A3B1 ° A1B3)^e2 +(A1B2 ° A2B1)^e3:
| 48 | CHAPTER 2. VECTORS | 
2.5 kij klm = ±il±jm ° ±im±jl
a) The left hand side is
kij klm = k11 k11
=111 111 + 211 211 + 311 311
=(0)(0) + (0)(0) + (0)(0)
=0:
The right hand side is ±11±11 °±11±11 = (1)(1)°(1)(1) = 1°1 = 0 b) The left hand side is
kij klm = k31 k13
=131 113 + 231 213 + 331 313
=(0)(0) + (+1)(°1) + (0)(0)
=0 ° 1 + 0 = °1:
The right hand side is ±31±13 ° ±33±11 = (0)(0) ° (1)(1) = °1
| 2.12. SOLUTIONS | 49 | 
2.6
a)
A:(B £ C) = Ak(B £ C)k = Ak ijkBiCj = Bi ijkCjAk = Bi jkiCjAk = Bi(C £ A)i = B:(C £ A)
Also this is
= Cj ijkAkBi = Cj kijAkBi = Cj(A £ B)j = C:(A £ B):
b)
A:(B £ C) = Ak(B £ C)k = Ak ijkBiCj
=Bi ijkAkCj = Bi jkiAkCj = °Bi kjiAkCj
=°Bi(A £ C)i = °B:(A £ C):
c)
A£ (B £ C) = ijkAi(B £ C)je^k = ijkAi jlmBlCme^k
=ijk jlmAiBlCme^k = ° ikj jlmAiBlCme^k
=°(±il±km ° ±im±kl)AiBlCme^k
=°AiBiCke^k + AiBkCie^k
= °C(A:B) + B(A:C):
d)
(A £ B):(C £ D) = (A £ B)k(C £ D)k
=ijkAiBj lmkClDm
=ijk lmkAiBjClDm
=kij klmAiBjClDm
=(±il±jm ° ±im±jl)AiBjClDm
=AiBjCiDj ° AiBjCjDi
=(A:C)(B:D) ° (A:D)(B:C):
e)
A £ [B £ (C £ D)] = ijkAi[B £ (C £ D)]je^k
