Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы и ответы нах / komp_modelirovanie_2.docx
Скачиваний:
54
Добавлен:
19.03.2015
Размер:
118.99 Кб
Скачать
  1. Имитационные модели и системы. Этапы построения имитационной модели. Анализ и оценка адекватности имитационной модели. Примеры имитационных моделей.

Имитационное моделирование – это метод исследования, заключающийся в имитации на ЭВМ с помощью комплекса программ процесса функционирования системы или отдельных ее частей и элементов. Сущность метода имитационного моделирования заключается в разработке таких алгоритмов и программ, которые имитируют поведение системы, ее свойства и характеристики в необходимом для исследования системы составе, объеме и области изменения ее параметров.

Принципиальные возможности метода весьма велики, он позволяет при необходимости исследовать системы любой сложности и назначения с любой степенью детализации. Ограничениями являются лишь мощность используемой ЭВМ и трудоемкость подготовки сложного комплекса программ.

Имитационная модель — логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

Имитационная модель воспроизводит поведение сложной системы взаимодействующих элементов. Для имитационного моделирования характерно наличие следующих обстоятельств (одновременно всех или некоторых из них):

  • объект моделирования — сложная неоднородная система;

  • в моделируемой системе присутствуют факторы случайного поведения;

  • требуется получить описание процесса, развивающегося во времени;

  • принципиально невозможно получить результаты моделирования без использования компьютера.

Состояние каждого элемента моделируемой системы описывается набором параметров, которые хранятся в памяти компьютера в виде таблиц. Взаимодействия элементов системы описываются алгоритмически. Моделирование осуществляется в пошаговом режиме. На каждом шаге моделирования изменяются значения параметров системы. Программа, реализующая имитационную модель, отражает изменение состояния системы, выдавая значения ее искомых параметров в виде таблиц по шагам времени или в последовательности происходящих в системе событий. Для визуализации результатов моделирования часто используется графическое представление, в т.ч.  анимированное.

Этапы имитационного моделирования

В общем случае проведение имитационного моделирования можно разбить на следующие этапы.

  1. Выбрать основные объекты и величины, описывающие исследуемый процесс. Определить выходные показатели. Построить модель системы.

  2. Задать исходные ключевые данные и определить выходные показатели, описывающие модель системы. Установить взаимосвязи между исходными и выходными показателями в виде математического уравнения или неравенства.

  3. Задать законы распределения вероятностей для ключевых параметров модели.

  4. Провести компьютерную имитацию значений ключевых параметров модели. Провести генерацию случайных значений.

  5. Рассчитать основные характеристики вероятностных распределений исходных и выходных показателей.

  6. Провести анализ полученных результатов и принять решение.

Оценка качества модели является завершающим этапом ее разработки и пре­следует две цели:

1) проверить соответствие модели ее предназначению (целям исследования);

2 ) оценить достоверность и статистические характеристики результатов, полу­чаемых при проведении модельных экспериментов.

Оценка адекватности модели. В общем случае под адекватностью понимают степень соответствия модели тому реальному явлению или объекту, для описания которого она строится. Адекватность модели определяется степенью ее соответствия не столько реально­му объекту, сколько целям исследования.

Один из способов обоснования адекватности разработанной модели -  использование методов математической статистики. Суть этих методов заключается в проверке выдвинутой гипотезы (в данном случае - об адекватности модели) на основе некоторых статистических критериев.

Процедура оценки основана на сравнении измерений на реальной системе и результатов экспериментов на модели и может проводиться различными способа­ми. Наиболее распространенные из них:

• по средним значениям откликов модели и системы;

• по дисперсиям отклонений откликов модели от среднего значения откликов системы;

• по максимальному значению относительных отклонений откликов модели от откликов системы.

Пример: модель популяции.

  1. Моделирование стохастических систем. Общие и частные стохастические методы. Моделирование последовательностей независимых и зависимых случайных испытаний. Общий алгоритм моделирования дискретной случайной величины.

Например, нельзя указать точное число молекул воздуха в его 1 см, имеющих данную (фиксированную) скорость. Можно говорить лишь о вероятности обнаружения молекул со значениями скоростей из некоторого интервала или о математическом ожидании числа таких молекул. Это пример стохастической системы.

Стохастические модели -- это модели стохастических систем, в которых предсказываемые значения зависят от распределения вероятностей.

СТОХАСТИЧЕСКАЯ МОДЕЛЬ - математическая модель процесса, учитывающая факторы случайной природы. Также носит название «вероятностная» модель.

Модель, которая в отличие от детерминированной модели содержит случайные элементы. Таким образом, при задании на входе модели некоторой совокупности значений, на ее выходе могут получаться различающиеся между собой результаты в зависимости от действия случайного фактора.

Моделирование последовательностей независимых и зависимых случайных испытаний.

Пусть имеются случайные числа xi, т.е. возможные значения случайной величины x, равномерно распределённой в интервале {0,1}. Необходимо реализовать случайное событие А, наступающее с заданной вероятностью Р. Определим А как событие, состоящее в том, что выбранное значение xi удовлетворяет неравенству:

x£Р (1)

Тогда вероятность события А будет : . Противоположное событию А состоит в том, что x>р. Тогда . Процедура моделирования состоит в этом случае в выборе значений xi и сравнение их с р. При этом, если условие (1) удовлетворяется, то исходом испытания будет событие А.

Таким же образом можно рассмотреть группу событий. Пусть А1, А2…Аn — полная группа событий, наступающая с вероятностями Р1, Р2, … Рn соответственно. Определим Аm как событие, состоящее, в ом, что выбранное значение xi случайной величины x удовлетворяет неравенству:

lm-1­<xi<lm, где (2)

Тогда . Процедура моделирования испытаний в этом случае состоит в последовательности сравнений случайных чисел xi со значениями lk. Исходом испытания оказывается событие Am, если выполняется условие (2). Эту процедуру называют определением исхода по жребию в соответствии с вероятностями Р1, Р2, … Рn.

При моделировании систем часто необходимо осуществить такие испытания, при которых искомый результат является сложным событием, зависящим от 2-х и более простых.

Пусть например, независимые события А и В имеют вероятности наступления РА и РВ. Возможными исходами совместных испытаний в этом случае будут события с вероятностями РАРВ, (1-РАВ, РА(1-РВ), (1-РА)(1-РВ). Для моделирования совместных испытаний можно использовать последовательную проверку условия (1). Он требует двух чисел xi.

Рассмотрим случай, когда события А и В являются зависимыми и наступают с вероятностями РА и РВ. Обозначим через Р(В/А) условную вероятность события В при условии, что событие А произошло. Считаем, что Р(В/А) задана. Из последовательности случайных чисел {X} извлекается определённое число xm и проверяется справедливость неравенства xm<PA. Если это неравенство справедливо, то наступило событие А. Для испытания, связанного с событием В используется вероятность Р(В/А). Из совокупности чисел {X} берётся очередное число xm+1 и проверяется условие xm+1£ Р(В/А). В зависимости от того выполняется или нет это неравенство, исходом испытания является АВ или . Если неравенство xm<PA не выполняется, то наступило событие . Поэтому для испытания, связанного с событием В необходимо определить вероятность:

Выберем из совокупности {X} число xm+1 и проверим справедливость неравенства . В зависимости от того, выполняется оно или нет, получаем исходы испытания .

Моделирование случайной величины дискретного типа

А. Общий алгоритм моделирования.

Если случайная величина  дискретная, то ее моделирование можно свести к моделированию независимых испытаний. В самом деле, пусть имеет место следующий ряд распределения:

Обозначим через  событие, состоящее в том, что случайная величина  примет значение , при этом . Тогда нахождение значения, принятого случайной величиной  в результате испытания, сводится к определению того, какое из событий  появится. Так как события  несовместны и вероятность появления каждого из них не изменяется от испытания к испытанию, то для определения последовательности значений, принятых случайной величиной  можно использовать алгоритм моделирования последовательности независимых испытаний.

7

Соседние файлы в папке Вопросы и ответы нах