Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
определеннный интеграл.docx
Скачиваний:
15
Добавлен:
18.03.2015
Размер:
219.15 Кб
Скачать

8. Приложения определенного интеграла. Площадь плоской фигуры

Определение: Плоская фигура – часть плоскости, ограниченная простой замкнутой кривой, при этом криваяназывается границей фигуры.

Определение: Мы будем говорить, что многоугольник вписан в фигуру , если каждая точка этого многоугольника принадлежит фигуреили ее границе.

Определение: Если все точки плоской фигуры и ее границы принадлежат некоторому многоугольнику, то мы будем говорить, что указанный многоугольник описан вокруг фигуры .

Замечание: Площадь любого вписанного в фигуру многоугольника не больше площади любого описанного вокруг фигурымногоугольника.

Пусть - числовое множество площадей вписанных в плоскую фигурумногоугольников, а- числовое множество площадей описанных вокруг плоской фигурымногоугольников. Очевидно, что множествоограничено сверху (площадью любого описанного вокруг фигурымногоугольника), а множествоограничено снизу (например, числом нуль).

Обозначим через точную верхнюю грань множества, черезточную нижнюю грань множества.

Числа иназываются соответственнонижней площадью и верхней площадью фигуры

Замечание: Нижняя площадь фигурыне больше верхней площади, т. е..

Определение. Плоская фигура называетсяквадрируемой, если верхняя площадь этой фигуры совпадает с ее нижней площадью. При этом число называетсяплощадью фигуры .

Теорема: Для того чтобы плоская фигура была квадирируемой, необходимо и достаточно, чтобы для любого положительного числаможно было указать такой описанный вокруг фигурымногоугольник и такой вписанный в фигурумногоугольник, что разностьплощадей которых была бы меньше,.

Определение: Криволинейной трапецией называется фигура, ограниченная графиком заданной на сегменте непрерывной и неотрицательной функции, ординатами, проведенными в точкахи, и отрезком осимежду точкамии.

Теорема: Криволинейная трапеция представляет собой квадрируемую фигуру, площадь которой может быть вычислена по формуле:

.

9. Объемы тел вращения

Пусть - некоторое конечное тело. Рассмотрим всевозможные многогранники, вписанные в тело, и всевозможные многогранники, описанные вокруг тела.

Пусть - числовое множество объемов вписанных в тело, а- числовое множество объемов описанных вокругмногогранников. Множествоограничено сверху (объемом любого описанного многогранника), а множествоограничено снизу (например, числом нуль).

Обозначим через точную верхнюю грань множества, а черезточную нижнюю грань множества.

Числа иназываются соответственнонижним объемом и верхним объемом тела .

Замечание: Нижний объем телане больше верхнего объемаэтого тела, т. е..

Определение: Тело называется кубируемым, если верхний объемэтот тела совпадает с нижним объемом. При этом числоназывается объемом тела.

Теорема: Для того чтобы тело было кубируемым, необходимо и достаточно, чтобы для любого положительного числаможно было указать такой описанный вокруг теламногогранник и такой вписанные в теломногогранник, разностьобъемов которых была бы меньше.

Теорема: Пусть функция непрерывна на сегменте. Тогда тело, образованное вращением вокруг осикриволинейной трапеции, ограниченной графиком функции, ординатами в точкахи, и отрезком осимежду точкамии, кубируемо и его объемможет быть найден по формуле:

.