Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика_экзамен_ответы.docx
Скачиваний:
97
Добавлен:
18.03.2015
Размер:
3.24 Mб
Скачать

7. Основное уравнение динамики вращательного движения

Динамика вращательного движения материальной точки. Основные параметры: момент силы, момент импульса, момент инерций. Основной закон динамики вращательного движения.

а) Пусть материальная точка массы m вращается относительно оси ОО΄. Обозначим r - радиус-вектор, проведенный от оси вращения до точки приложения силы F (Рисунок 10).Моментом силы F относительно оси вращения называется вектор M, равный векторному произведению радиус-вектора на вектор силы M = [r∙F] и направленный по оси вращения в сторону, определяемую по правилу правого буравчика. Модуль вектора момента силы равен M = F∙r∙sinα, где α - угол между векторами r и F.

Момент инерции.

При изучении вращения твердого тела пользуются понятием момента инерции. Моментом инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси: . В случае непрерывного распределения масс эта сумма сводится к интегралу, где интегрирование производится по всему объему тела.

Величина r в этом случае есть функция положения точки с координатами x, y, z.

Для тела, которое вращается вокруг оси, 2 закон Ньютона формулируется следующим образом: В инерциальной системе отсчёта момент равнодействующей всех сил, приложенных к телу, относительно оси вращения равен произведению момента инерции этого тела и сообщаемого ему углового ускорения: – это выражение называется основным уравнением динамики вращательного движения.

8. Законы изменения и сохранения момента импульса

Рассмотрим произвольную систему тел. Моментом импульса системы назовем величину L, равную векторной сумме моментов импульсов отдельных ее частей Li, взятых относительно одной и той же точки выбранной системы отсчета. .

Моментом импульса тела называется физическая векторная величина, характеризующая его механическое состояние при вращательном движении и равная произведению момента инерции тела и его угловой скорости:L=Iw.

Из основного уравнения динамики вращательного движения следует, что импульс момента силы, действующей на тело, равен изменению момента импульса тела: Если на тело не действуют внешние силы или действуют так, что векторная сумма моментов этих сил равна нулю, то Iw=const.

Найдем скорость изменения момента импульса системы. Проведя рассуждения, аналогичные описанию вращательного движения твердого тела, получим, что

скорость изменения момента импульса системы равна векторной сумме моментов внешних сил M, действующих на части этой системы .

Причем вектора L и M задаются относительно одной и той же точки O в выбранной СО.

Причиной изменения момента импульса является действующий на систему результирующий момент внешних сил. Изменение момента импульса за конечный промежуток времени можно найти, воспользовавшись выражением .

Приращение момента импульса системы равно импульсу результирующего момента внешних сил, действующих на нее.

В неинерциальной системе к моменту внешних сил необходимо прибавить момент сил инерции относительно выбранной точки O.

Закон сохранения момента импульса. 

 Из закона изменения момента импульса, полученного нами для системы тел, вытекает закон сохранения момента импульса применительно к механике:

момент импульса системы тел сохраняется неизменным при любых взаимодействиях внутри системы, если результирующий момент внешних сил, действующих на нее, равен нулю. При использовании этого закона моменты импульса и сил необходимо брать относительно одно и той же оси.

Закон сохранения момента импульса является фундаментальным законом природы и выполняется для любых, а не только механических систем.

Следствия из закон сохранения момента импульса:

·        в случае изменения скорости вращения одной части системы другая также изменит скорость вращения, но в противоположную сторону таким образом, что момент импульса системы не изменится;

·        если момент инерции замкнутой системы в процессе вращения изменяется, то изменяется и ее угловая скорость таким образом, что момент импульса системы останется тем же самым;

·        в случае, когда сумма моментов внешних сил относительно некоторой оси равняется нулю, момент импульса системы относительно этой же оси остается постоянным.

9. Работа силы. Мощность

1.Механическая работа — это физическая величина, являющаяся количественной характеристикой действия силы F на процесс γ(t), зависящая от численной величины, направления силы и от перемещения точки её приложения.

Работа . Механическая работа .

При прямолинейном движении и постоянном значении силы работа равна произведению величины проекции вектора силы на направление движения и величины пройденного пути

2. Мо́щность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. – средняя мощность. – мгновенная мощность.

Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы.

В механике: Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело: , F — сила, v — скорость, α — угол между вектором скорости и силы.

Частный случай мощности при вращательном движении:

, M — момент силы, — угловая скорость, n — частота вращения

10. Кинетическая и потенциальная энергия. Закон сохранения механической энергии

Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. [СИ — Джоуль.] Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением. Сила F, воздействуя на покоящееся тело и приводя его в движение, совершает работу, а энергия движущегося тела увеличивается на величину затраченной работы. Значит, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, тратится на увеличение кинетической энергии dT тела, т. е.

Потенциальная энергия - механическая энергия системы тел, которая определяется характером сил взаимодействия между ними и их взаимным расположением, скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином. Конкретный вид функции P зависит от вида силового поля. Например, потенциальная энергия тела массой m, поднятого на высоту h над поверхностью Земли, равна P=mgh.

Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля. Любая физическая система стремится к состоянию с наименьшей потенциальной энергией. Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.

Полная механическая энергия системы - энергия механического движения и взаимодействия, то есть равна сумме кинетической и потенциальной: E=P+T

Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

Однако в различных разделах физики по историческим причинам закон сохранения энергии формулируется по-разному, в связи с чем говорится о сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии выражается в виде первого начала термодинамики.

В ньютоновской механике формулируется частный случай закона сохранения энергии — Закон сохранения механической энергии, звучащий следующим образом: Полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной.

W = Wk + Wp + U , в нашем случае W= E, Wk= T, Wp= P, где W – полная энергия системы; Wk − кинетическая энергия системы в целом; Wp − потенциальная энергия системы в целом; U – внутренняя энергия системы.

(Закон сохранения энергии можно распространить на незамкнутые системы, если принять во внимание условие приращений.)

Классическим примером этого утверждения являются пружинный или математический маятники с пренебрежимо малым затуханием. В случае пружинного маятника в процессе колебаний потенциальная энергия деформированной пружины (имеющая максимум в крайних положениях груза) переходит в кинетическую энергию груза (достигающую максимума в момент прохождения грузом положения равновесия) и обратно. В случае математического маятника аналогично ведёт себя потенциальная энергия груза в поле силы тяжести.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]