
ГОС / MODUL_1_matematika
.docМ1_1. Клас-е опр-е вт-и, аксиомы теории в-ти. Формулы полной вероятности и Байеса.
Опр. Мн-во Е взаимоисключающих исходов эксперимента, наз. пр-вом эл-ных событий.
Опр. Эл. событием наз элемент Е
Опр.
Событием, наз мн-во АЕ
Опр. События А и В наз несовместными, если А∙В=ø, Е наз достоверным событием, ø – невозможным событием.
Пусть Е – пр-во элем событий
Опр.
Говорят, что на Е заданы в-ти, если
определена ф-ция Р действующая из Е в R
такая что 1)
р(е)≥0,
2)
.
Опр.
Вер-тью события А наз число р(А)=
Св-ва в-ти:
1. р(ø)=0, р(Е)=1,
2.Для любого A,BєF, р(А+В)=р(А)+р(В)-р(АВ)
Д-во: A+B=(A-AB)+(B-AB)+AB: т.к. эти события несовместны, то p(A+B)=p(A-AB)+p(B-AB)+p(AB)+p(AB)-p(AB)=p(A)+p(B)-p(AB)
следствие: если А и В несовместны, то р(А+В)=р(А)+р(В)
док: р(А+В)=р(А)+р(В)-р(АВ)=<р(АВ)= ø >= р(А)+р(В)
3.Для
любого AєF
р()=1-р(А)
Д-во:
А+=E
p(A)+p(
)=p(E)=1
P()=1-1-p(A)
4. Для
любого A,BєF,
такая что A
B
вып-ся p(A)<=p(B).
B=A+B
P(B)=p(A)+p(B)>=p(A)
5. Для любого AєF выполняется p(A)<=1.
Классич-е опред-е в-ти.
Пусть Е пр-во эл-ных событий все исходы кот равновероятны состоит из n элементов
р(А)= (число эл А)/n = (число благоприятных исходов)/(на общее число исходов).
Л1: если элем. аєА можно выбрать n способами, а эл-т bєВ можно выбрать m способами, то элемент (а,b) можно выбрать nm способами. А если аb= ø, то элемент (неупорядоченный) (а,b) можно выбрать mn способами.
Перестановки:
Опр: пусть дано мн-во {а1, … ,аn}, установленный на мн-ве порядок наз перестановкой.
Р(n)=n!
Опр. Неупорядоченное подмн-во из m элементов данного мн-ва наз (m≤n) сочетанием из n элементов по m. Число сочетаний можно рассчитать по формуле
.
Опр: упорядоченное подмн-во из m элементов данного мн-ва (m≤n) наз размещением (разм-ем) из n элементов по m.
Разм-ния бывают без повторений и с повторением.
Число
разм-ий без повторений можно рассчитать
по ф-ле
.
Число разм-ний с повторением равно
=nm
Аксиомы теории вер-ти
Опр.
С-ма
F
подмн-во Е наз. Алгеброй, если: 1) Е
принадлежит F,
2) для любого А принадл. F
и для любого B
принадл. F
выполн. А+В принадл.F и А*В принадл. F
3) для любого А принадл. F
выполн.
Опр. Вер-тью событий наз. ф-я р:F->R, такая что
1)
А принадл. F, P(A)>=0
2) P(E)=1
3)
(Аn)n€N
такой
что Аi*Aj
=Ø
при i<>j
выполн.
<E,
F,
P>
наз. Вероятностное пространство
6.Т:
(о непрерывности вероятности):
для того чтобы
(Аn),
n єN и так чтобы АiАj=
ø выполнялось р(
)=
необ
и дост чтобы
(Вn),n
єN, так чтобы Вn+1
Вn,
=В
выполнялось lim р(Вn)=р(В),
при n→∞.
Услов-я вер-ть. Независимость событий.
Опр:
Пусть<,F,р>-
вероятностное пр-во, А и В события, причем
р(В)>0, тогда вероятностью события А
при условии, что событие В уже произошло
наз число р(А/В)=р(АВ)/р(В).
Опр: Событие А и В наз независимыми, если р(А/В)=р(А).
Следствие: Если А и В независимы, то р(АВ)=р(А)р(В)
Формула полной вер-ти.
Т:
пусть А– некоторое событие; В1,В2,…,Вn
имеют положительные вероятности, попарно
несовместные и такие что А,
тогда имеет место формула полной
вероятности.
р(А)=р(Вi)р(А/Вi).
Док-во:
А,
→ А=А
=
АВi.
р(А)=р(АВi)=
=
р(АВi)=
(т.к. событ-я несовместны, то)
<р(С/Д)=р(СД)/р(Д))>=
р(Вi)р(А/Вi).
Ч.т.д.
Схема решения задач на вычисление полной вероятности.
1.уяснить послед-ть испытаний рассм-мых в задаче.
2.обозначить событие, вер-ти к-рого нужно найти А.
3. составить попарно несовместные гипотезы В1,В2,…,Вn
4.Вычислить р(Вi), р(А/Вi),i=1,…,n
5. По ф-ле полной вер-ти найти р(А).
Ф-ла Байеса.
Пусть событие А может наступить только с одним из n попарно несовместных событий В1,В2,…,Вn. Пусть произойдет опыт и событие А наступило. Найти вер-ть выполнения гипотезы Вi, если событие А произошло.
– Формула Байеса
Док-во:
М1.
–М1 - 2. Задачи матм-й статистики. Проверка
гипотез.
Задачи МС возникают тогда, когда нужно найти закон распред-я предметов по нек-му признаку. Напр, закон распр-я людей по возрасту и т.д. Для реш-я таких задач вводят случ-ю величину х, закон расп-я к-рой нужно найти и из всей совок-ти предметов выбирают произвольную и достаточно большую часть к-рой наз-т выборкой. Выборка должна удовл-ть 2-м св-вам: 1) достаточно большой; 2) произвольная.
МС занимается разработкой приёмов стат-ких наблюдений и анализом стат-ких данных.
Основные з-чи МС
1. Задача ставится так: в результате N незав-х испытаний над случайной величиной X получены следующие её значения: x1, x2, … , xn. Требуется опред-ть, хотя бы приближённо, неизвестную ф-цию распред-я F(x) этой случайной величины.
2. Пусть из общих соображений F(x) известная ф-ция распред-ния некоторой случ-й величины. По результатам N незав-х испытаний: x1, x2, …, xn требуется оценить параметры этого распред-я и точность этих оценок. Напр, установить числовые знач-я мат-го ожидания и дисперсии этой случ-й величины X.
3. З-ча ставится так: на основании нек-рых соображений выдвигается гипотеза о виде распред-я или о парам-х распред-я нек-рой случайной величины. Спрашивается, совместимы ли результаты наблюдений x1, x2, … , xn с выдвинутой гипотезой.
Эмпирический закон распр-я.
Введем случ-ю величину х, закон распр-я нужно получить. Проведем n опытов. Пусть значение х1 принимает m1 раз, х2 принимает m2 раза, и т.д.
На
практике очень редко встреч-ся случаи,
когда закон распр-я не известен полностью.
Обычно не известен какой-то параметр
θ. Приближенное знач-е этого параметра
называется оценкой,
-
оценка, она должна удовлетворять двум
условиям: 1) М[
]=
θ; 2) D[
]
→0 при n→∞
Оценки удовлетв-щие условиям 1 и 2 называются состоятельными.
Опр: Пусть ξ – дискретная случайная величина, тогда мат-е ожидание ξ – наз числа M[ξ]= ξ1p1+ ξ2p2+…
Опр: Пусть <Ω,F,p> - вероятностное пр-во случайной величиной ξ: Ω →R (измеримая, т.е. такая, что для любого борелевского мн-ва В из R ξ-1(В) єF
ξ-1(В)={x: ξ(x) єB} xє Ω
Закон больших чисел.
Факт приближения средних характеристик большого числа опытов, к некоторой определенной постоянной.
Первое нер-во Чебышева
Пусть случайная величина х неотрицательна и имеет математическое ожидание M[x], тогда p(x)>=1, M[x]>=1.
Нормальное распр-е.
Закон
нормального распр-я, если случайная
величина имеет плотность вероятности
р(х)=.
Выясним, какой смысл имеют параметры G и а.
M[x]=a; D[x]=M[(x-M[x])2]=M[(x-a)2] G2=D[x]
Равномерное распред-е.
Опр:
случайная величина х имеет закон
равном-го распр-я, если случ-я величина
имеет плотность вероятности р(х)=;
1=
=с(а-b)
с=1/(b-а).
Закон равном-го распр-я имеет место там, где случ-я величина принимает знач-е из [а,b]. Причем все знач-я из [а,b] равномерные.
Дисперсия (Д) и ее св-ва.
Опр:Д. случ-й величины ξ наз. число D[ξ]=M[(ξ-M[ξ])2]
Св-ва: 1)D[ξ]=M[ξ2]-(M[ξ])2. 2)D[ξ]=0 P(ξ=c)=1
3)D[c ξ]=c2D[ξ].
4) Если случ-я величина ξ и η независимы, то D[ξ+ η]=D[ξ]+D[η]
Опр:
если случ-я величина ξ не явл-ся дискретной
и F (ξ) ее ф-ция распр-я, то M[ξ]=
ξdF(ξ)
Опр: Медианой выборки наз-ся число, к-рое делит упоряд-е мн-во данных чисел пополам.
Опр: Модой наз-ся число, к-рое встечается в выборке найболее часто.
Опр: Разбросом выборки наз-ют число, равное xнаиб.-xнаим.
Второе неравенство Чебышева
Пусть случайная величина х имеет математическое ожидание M[x], и дисперсию D(x), тогда
Непрер-я случ величина
Опр: случ-я величина ξ наз непрер-ой, если ее ф-ция распред-я F ξ(х) непрерывна для всех х.
Элементы проверки статистич-х гипотез
Опр. Статистич-й гипотезой наз-ся любое предполож-е о виде или параметрах неизвестного закона распр-я.
Пусть имеется случ-я величина ξ с неизвестной ф-ей распр-я, связанная с генеральной совок-ю. Выдвигается гипотеза H – случ-я величина ξ имеет конкретное распр-е. Требуется по выборке объёма n: (x1, x2, … xn) решить – принять или отвергнуть эту гипотезу.
Критерии, к-рые позволяют это делать, называют крит-ми согласия.
Крит-и значимости.
Имеется случ-я величина ξ, связанная с ген-ой совок-ю, распр-ние к-рой неизвестно. Требуется оценить нек-е её числовые характер-ки, т. е. проверить гипотезу Н, состоящую в том, что нек-рая числовая характ-ка случ-й величины ξ равна ранее заданному числу, напр, требуется по выборке объёма n (x1, x2, …, xn) проверить, что Mξ=m0 и т.п.
Крит-и, к-рые позволяют это сделать, наз-ся крит-ми значимости.
Прив-м нек-рые крит-и знач-ти.
1) Крит-и значимости для нахождения ср-го знач-я случ-ной величины ξ.
2) Крит-и знач-ти для сравнения ср-х знач-й 2х случ-х величин.
3) Крит-и знач-ти, основанные на стандартных ошибках.
Статистич-я проверка гипотезы по закону распредел-я.
Опр: Гип-зу H0 наз-м гип-зой о сходстве, а альтернат- ю гип-зу о различаи наз-м H1.
Возьмем случ-ю
величину ξ и проведем k
опытов. Пусть в этих оытах ξ прин-ет
знач-я:
.
В то же время по предпол-ю ξ д.б. принимать
знач-е
.
Находим
.
В таблице распред-я χ2
для знач-я ν=k-1
(число степеней свободы) выбирается
χ2(критериал-е)(0,05)
или χ2(критериал-е)(0,01).
Чертим ось значим-ти:
Случ.1. Если χ2 попало в зону эмпир-кой знач- ти, то применим гипотезу H0 (об отсутствии отличий).
Случ.2. Если χ2 попало в зону знач-ти, то прим-ем гип-зу H1 (о наличае различий).
Случ.3. Если χ2 попало в зону неопредел-т, то вывод сделать нельзя и нужно увеличить кол-во опытов. Критерий χ2 примен-ют при проверке различий м/у 2-мя выборками.