
- •Об авторе
- •Предисловие
- •Для кого эта книга
- •О чем эта книга
- •Что вам потребуется при чтении этой книги
- •Условные обозначения
- •От издательства
- •Глава 1. Обзор алгоритмов
- •Что такое алгоритм
- •Этапы алгоритма
- •Определение логики алгоритма
- •Псевдокод
- •Использование сниппетов
- •Создание плана выполнения
- •Введение в библиотеки Python
- •Библиотеки Python
- •Реализация Python с помощью Jupyter Notebook
- •Методы разработки алгоритмов
- •Параметры данных
- •Параметры вычислений
- •Анализ производительности
- •Анализ пространственной сложности
- •Анализ временной сложности
- •Оценка эффективности
- •Выбор алгоритма
- •«О-большое»
- •Проверка алгоритма
- •Точные, приближенные и рандомизированные алгоритмы
- •Объяснимость алгоритма
- •Резюме
- •Глава 2. Структуры данных, используемые в алгоритмах
- •Структуры данных в Python
- •Список
- •Кортеж
- •Словарь
- •Множество
- •DataFrame
- •Матрица
- •Абстрактные типы данных
- •Вектор
- •Стек
- •Очередь
- •Базовый принцип использования стеков и очередей
- •Дерево
- •Резюме
- •Глава 3. Алгоритмы сортировки и поиска
- •Алгоритмы сортировки
- •Обмен значений переменных в Python
- •Сортировка пузырьком
- •Сортировка вставками
- •Сортировка слиянием
- •Сортировка Шелла
- •Сортировка выбором
- •Алгоритмы поиска
- •Линейный поиск
- •Бинарный поиск
- •Интерполяционный поиск
- •Практическое применение
- •Резюме
- •Глава 4. Разработка алгоритмов
- •Знакомство с основными концепциями разработки алгоритма
- •Вопрос 1. Даст ли разработанный алгоритм ожидаемый результат?
- •Вопрос 2. Является ли данный алгоритм оптимальным способом получения результата?
- •Вопрос 3. Как алгоритм будет работать с большими наборами данных?
- •Понимание алгоритмических стратегий
- •Стратегия «разделяй и властвуй»
- •Стратегия динамического программирования
- •Жадные алгоритмы
- •Практическое применение — решение задачи коммивояжера
- •Использование стратегии полного перебора
- •Использование жадного алгоритма
- •Алгоритм PageRank
- •Постановка задачи
- •Реализация алгоритма PageRank
- •Знакомство с линейным программированием
- •Практическое применение — планирование производства с помощью линейного программирования
- •Резюме
- •Глава 5. Графовые алгоритмы
- •Представление графов
- •Типы графов
- •Особые типы ребер
- •Эгоцентрические сети
- •Анализ социальных сетей
- •Введение в теорию сетевого анализа
- •Кратчайший путь
- •Создание окрестностей
- •Показатели центральности
- •Вычисление показателей центральности с помощью Python
- •Понятие обхода графа
- •BFS — поиск в ширину
- •DFS — поиск в глубину
- •Практический пример — выявление мошенничества
- •Простой анализ мошенничества
- •Анализ мошенничества методом сторожевой башни
- •Резюме
- •Глава 6. Алгоритмы машинного обучения без учителя
- •Обучение без учителя
- •Обучение без учителя в жизненном цикле майнинга данных
- •Современные тенденции исследований в области обучения без учителя
- •Практические примеры
- •Алгоритмы кластеризации
- •Количественная оценка сходства
- •Иерархическая кластеризация
- •Оценка кластеров
- •Применение кластеризации
- •Снижение размерности
- •Метод главных компонент (PCA)
- •Ограничения PCA
- •Поиск ассоциативных правил
- •Примеры использования
- •Анализ рыночной корзины
- •Ассоциативные правила
- •Оценка качества правила
- •Алгоритмы анализа ассоциаций
- •Практический пример — объединение похожих твитов в кластеры
- •Тематическое моделирование
- •Кластеризация
- •Алгоритмы обнаружения выбросов (аномалий)
- •Использование кластеризации
- •Обнаружение аномалий на основе плотности
- •Метод опорных векторов
- •Резюме
- •Глава 7. Традиционные алгоритмы обучения с учителем
- •Машинное обучение с учителем
- •Терминология машинного обучения с учителем
- •Благоприятные условия
- •Различие между классификаторами и регрессорами
- •Алгоритмы классификации
- •Задача классификации
- •Оценка классификаторов
- •Этапы классификации
- •Алгоритм дерева решений
- •Ансамблевые методы
- •Логистическая регрессия
- •Метод опорных векторов (SVM)
- •Наивный байесовский алгоритм
- •Алгоритмы регрессии
- •Задача регрессии
- •Линейная регрессия
- •Алгоритм дерева регрессии
- •Алгоритм градиентного бустинга для регрессии
- •Среди алгоритмов регрессии победителем становится...
- •Практический пример — как предсказать погоду
- •Резюме
- •Глава 8. Алгоритмы нейронных сетей
- •Введение в ИНС
- •Эволюция ИНС
- •Обучение нейронной сети
- •Анатомия нейронной сети
- •Градиентный спуск
- •Функции активации
- •Инструменты и фреймворки
- •Keras
- •Знакомство с TensorFlow
- •Типы нейронных сетей
- •Перенос обучения
- •Практический пример — использование глубокого обучения для выявления мошенничества
- •Методология
- •Резюме
- •Глава 9. Алгоритмы обработки естественного языка
- •Знакомство с NLP
- •Терминология NLP
- •Библиотека NLTK
- •Мешок слов (BoW)
- •Эмбеддинги слов
- •Окружение слова
- •Свойства эмбеддингов слов
- •Рекуррентные нейросети в NLP
- •Использование NLP для анализа эмоциональной окраски текста
- •Практический пример — анализ тональности в отзывах на фильмы
- •Резюме
- •Глава 10. Рекомендательные системы
- •Введение в рекомендательные системы
- •Типы рекомендательных систем
- •Рекомендательные системы на основе контента
- •Рекомендательные системы на основе коллаборативной фильтрации
- •Гибридные рекомендательные системы
- •Ограничения рекомендательных систем
- •Проблема холодного старта
- •Требования к метаданным
- •Проблема разреженности данных
- •Предвзятость из-за социального влияния
- •Ограниченные данные
- •Области практического применения
- •Практический пример — создание рекомендательной системы
- •Резюме
- •Глава 11. Алгоритмы обработки данных
- •Знакомство с алгоритмами обработки данных
- •Классификация данных
- •Алгоритмы хранения данных
- •Стратегии хранения данных
- •Алгоритмы потоковой передачи данных
- •Применение потоковой передачи
- •Алгоритмы сжатия данных
- •Алгоритмы сжатия без потерь
- •Практический пример — анализ тональности твитов в режиме реального времени
- •Резюме
- •Глава 12. Криптография
- •Введение в криптографию
- •Понимание важности самого слабого звена
- •Основная терминология
- •Требования безопасности
- •Базовое устройство шифров
- •Типы криптографических методов
- •Криптографические хеш-функции
- •Симметричное шифрование
- •Асимметричное шифрование
- •Практический пример — проблемы безопасности при развертывании модели МО
- •Атака посредника (MITM)
- •Избежание маскарадинга
- •Шифрование данных и моделей
- •Резюме
- •Глава 13. Крупномасштабные алгоритмы
- •Введение в крупномасштабные алгоритмы
- •Определение эффективного крупномасштабного алгоритма
- •Терминология
- •Разработка параллельных алгоритмов
- •Закон Амдала
- •Гранулярность задачи
- •Балансировка нагрузки
- •Проблема расположения
- •Запуск параллельной обработки на Python
- •Разработка стратегии мультипроцессорной обработки
- •Введение в CUDA
- •Кластерные вычисления
- •Гибридная стратегия
- •Резюме
- •Глава 14. Практические рекомендации
- •Введение в практические рекомендации
- •Печальная история ИИ-бота в Твиттере
- •Объяснимость алгоритма
- •Алгоритмы машинного обучения и объяснимость
- •Этика и алгоритмы
- •Проблемы обучающихся алгоритмов
- •Понимание этических аспектов
- •Снижение предвзятости в моделях
- •Решение NP-трудных задач
- •Упрощение задачи
- •Адаптация известного решения аналогичной задачи
- •Вероятностный метод
- •Когда следует использовать алгоритмы
- •Практический пример — события типа «черный лебедь»
- •Резюме
11
Алгоритмы обработки данных
Эта глава посвящена алгоритмам, ориентированным на данные. Мы сфокуси руемся на трех задачах: хранении, потоковой передаче и сжатии данных. Начнем с краткого обзора алгоритмов обработки данных. Затем обсудим стратегии хранения данных, научимся применять алгоритмы к потоковым данным и изу чим различные методологии сжатия. Наконец, применим изученные концепции для анализа тональности твитов в режиме реального времени.
К концу этой главы вы будете иметь представление о концепциях и компромис сах, связанных с разработкой алгоритмов, ориентированных на данные.
Итак, в главе рассматриваются следующие темы:
zz Классификация данных.
zz Алгоритмы хранения данных. zz Алгоритмы сжатия данных.
zzАлгоритмы потоковой передачи данных.
Давайте познакомимся с основными понятиями.
ЗНАКОМСТВО С АЛГОРИТМАМИ ОБРАБОТКИ ДАННЫХ
Осознаем мы это или нет, но мы живем в эпоху больших данных. Чтобы полу чить представление о том, сколько данных генерируется каждую секунду, взгля ните на некоторые цифры, опубликованные Google за 2019 год. Как мы знаем,
Знакомство с алгоритмами обработки данных |
295 |
Google Фото — это мультимедийное хранилище для фотографий. В 2019 году в Google Фото ежедневно загружалось в среднем 1,2 миллиарда фотографий и видео. Кроме того, в среднем 400 часов видео (1 ПБ данных) ежеминутно вы кладывалось на YouTube. Можно с уверенностью сказать, что объем генерируе мых данных вырос просто лавинообразно.
Сегодня интерес к алгоритмам на основе данных связан с возможностью извлечь как ценную информацию‚ так и закономерности. При правильном использова нии данные могут стать основой для принятия решений в сфере политики, маркетинга, управления и анализа тенденций.
Так что вполне понятно‚ что алгоритмы, которые работают с данными, приоб ретают все большее значение. Разработка таких алгоритмов — это область ак тивных исследований. Нет сомнений в том, что поиск наилучших способов использования данных для получения измеримой выгоды находится в центре внимания различных организаций, предприятий и правительств по всему миру. Но данные в необработанном виде бесполезны. Чтобы извлечь информацию из таких данных, их необходимо обработать, подготовить и проанализировать.
Для начала сами данные нужно где-то хранить. Все большее значение приоб ретают эффективные методологии хранения данных. Из-за ограничений физи ческой памяти однонодовых систем большие данные могут находиться только в распределенном хранилище. Оно состоит из нескольких нод, соединенных высокоскоростными каналами связи. Изучение алгоритмов обработки данных разумно начать с рассмотрения различных алгоритмов хранения.
Прежде всего разделим данные по категориям.
Классификация данных
Давайте разберемся, как классифицируются данные в контексте создания ал горитмов их обработки. Как обсуждалось в главе 1, для этого используются параметры объема, разнообразия и скорости (3V). Такая классификация может стать основой для разработки алгоритмов‚ предназначенных для хранения и об работки данных.
Рассмотрим эти характеристики по порядку.
zz Объем (Volume) определяет количество данных, которые необходимо хранить
иобрабатывать. По мере увеличения объема задача становится трудоемкой
итребует выделения достаточного количества ресурсов для хранения, кэши рования и обработки. Для обозначения огромных массивов данных, которые