Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4 курс / Акушерство и гинекология / Татарчук_Т_Ф_,_Сокальский_Я_П_Эндокринная_гинекология_Часть_I.doc
Скачиваний:
1
Добавлен:
23.03.2024
Размер:
3.4 Mб
Скачать

Глава 1. Анатомия и физиология репродуктивной системы женщины 11

Другой важный класс клеток глии — олигодендроциты (клетки с малым количеством коротких и толстых отростков), которые формируют миелино-вую оболочку аксонов, что позволяет нейронам осуществлять свой эффект быстро и без ослабления на длинных расстояниях в пределах нервной систе­мы. Олигодендроциты также содержат ферменты стероидного генеза Р450 и продуцируют прегнанолон из холестерола.

Определение в ткани мозга ферментов стероидогенеза явилось одним из открытий, способствующим раскрытию механизмов участия ЦНС в регуля­ции репродуктивной функции и, что не менее важно, объясняющих измене­ния в ЦНС под влиянием изменений гормонального гомеостаза.

Секреция нейроактивных стероидов в астроцитах выше, чем в олигоденд-роцитах и нейронах, в связи с чем следует более детально остановиться на ха­рактеристике именно этих клеток.

Свойства астроцитов различны и ещё до конца не изучены, хотя уже сей­час существуют доказательства того, что астроциты являются паракринными клетками для нейронов:

  • в астроцитах выявлено наличие инсулиноподобного фактора роста (ИФР), содержание которого увеличивается к периоду полового созревания, а также растёт при лечении эстрогенами;

  • питуициты, как тип астроцитов, являются главными ненейронными кле­точными элементами в нейрогипофизе и играют важную роль в контроле вы­броса окситоцина и вазопрессина из нейросекреторных нервных окончаний;

  • присутствие в астроцитах рецепторов лютеинизирующего гормона (ЛГ) и человеческого хорионического гонадотропина (ХГ) предполагает, что ЛГ и ХГ могут влиять на функцию глиальных клеток и, соответственно, на процес­сы развития и функционирование мозга;

  • астроциты способны продуцировать множество иммуномодулирующих молекул, таких как интерлейкины (ИЛ-1, ИЛ-2, ИЛ-6), туморнекрозный фактор а, трансформирующий фактор роста-ос, интерферон и простагландин Е, при этом пролактин индуцирует митогенез и экспрессию цитокинов в астроцитах;

  • астроциты, как и нейроны, способны продуцировать кортикотропин-ри-лизинг фактор связывающий протеин (КРФ-СП), широко представленный в мозге. Стероиды, такие как дексаметазон, гидрокортизон и, в меньшей степе­ни, дегидроэпиандростерон, угнетают выброс КРФ-СП из астроцитов;

  • астроциты гипоталамического происхождения секретируют трансфор­мирующий фактор роста а и (3, который стимулирует генную экспрессию го-надотропин-рилизинг гормонов (Гн-РГ) в нейронах, при этом гипоталамичес-кие астроциты примерно в 4 раза активнее, чем астроциты коры в отношении синтеза дегидроэпиандростерона (ДГЭА).

Астроциты также могут участвовать в регуляции нейротрансмиттерного уровня глутамата, обеспечивающего возбуждающий эффект, и у-аминомасля-ной кислоты (ГАМК), играющей ключевую роль в достижении анксиолитиче-ского (успокаивающего) эффекта.

12 Эндокринная гинекология

В настоящее время выделены 3 главные химические формы трансмитте­ров: аминокислоты, моноамины и нейропептиды.

Аминокислоты действуют в качестве трансмиттеров как возбуждающе, так и угнетающе. В возбуждающих соединениях трансмиттерных субстанций ключевыми являются ацетилхолин, а также глутамат и аспартат. Ингибитор-ные соединения регулируются такими аминокислотами, как ГАМК и глицин.

Моноамины, как трансляторы, состоят из катехоламинергических (адрена­лин, норадреналин и допамин) и серотонинергических трансмиттеров. Так, тирозин поступает из кровотока внутрь катехоламиновых нейронов и являет­ся субстратом, из которого тирозин-гидроксилаза катализирует синтез допа. Трансформация допа в допамин происходит с помощью аминокислоты декар-токсилазы (АКД). Допамин-(3 оксидаза (ДВО) в норадренергических нейро­нах трасформирует допамин в норадреналин (НА).

ДА и НА высвобождаются в синаптическую щель, где они быстро связы­ваются с постсинаптическими рецепторами. В плазме избыток трансмиттеров претерпевает либо метаболическую инактивацию с помощью катехол-О-ме-тилтрансферазы (КОМТ), либо обратный захват пресинаптическими рецепто­рами, где они претерпевают метаболическую деградацию с помощью моно-аминооксидазы (МАО), формируя дегидроксифенилэтилгликоль (ДОФЭГ).

Пептидные трасмиттеры. Пептид-содержащие нейроны гипоталамуса были первоначально описаны как нейросекреторные нейроны, но позже стало известно, что практически все гипоталамические нейропептиды проецируют­ся во многие области мозга. Они обеспечивают нейротрансмиттерные функ­ции в регуляции приема пищи, пищевого и сексуального поведения (табл. 1).

Отдельно следует остановиться на роли оксида азота в центральной и пе­риферической нервной системе, открытие которого радикально изменило су­ществовавшие ранее взгляды на синаптическую трансмиссию. Хотя имеются существенные доказательства того, что оксид азота функционирует как ней-ротрансмиттер, следует отметить, что это необычный трансмиттер, т.к. он яв­ляется лабильным газом, который не может храниться в синаптических пу­зырьках. Оксид азота синтезируется из L-аргинина с помощью оксидазот-синтетазы и из нервных окончаний попадает путем простой диффузии, а не путем экзоцитоза как остальные нейротрансмиттеры (рис. 3). Более того, ок­сид азота не претерпевает обратимых реакций с рецепторами, как все осталь­ные обратимые нейротрансмиттеры, а формирует ковалентные соединения с несколькими потенциальными мишенями, которые включают ферменты, та­кие как изонилатциклаза и другие молекулы.

: Действие обратимых нейротрансмиттеров ограничено пресинаптическим выбросом или ферментной деградацией, в то время как действие оксида азо­та обеспечивается диффузией вдали от мишеней или формированием кова-лентных соединений с супероксидным анионом.

Формирование оксида азота из аргинина в мозге катализируется с помо­щью оксидазот-синтетазы в присутствии кислорода с НАДФ как кофермента