Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Волны.doc
Скачиваний:
44
Добавлен:
14.03.2015
Размер:
1.21 Mб
Скачать

ВВЕДЕНИЕ

Колебания и волны являются неотъемлемой частью жизни людей и большинства животных. Именно волны находятся в основе сердечных процессов, благодаря которым человек существует. Кровь циркулирует по телу, подгоняемая сокращениями сердца. А мышечные сокращение – это колебательные движения. Когда одна область начинает колебаться между разными состояниями, она неизбежно затрагивает соседнюю область – возникает движение. Биение сердца происходит благодаря низковольтному разряду электрического тока, который постоянно проходит через клети. Еще одним ярким примером волн в организме является перистальтическая волна, которая подхватывает пищу во время глотания и направляет через пищевод в желудок. Эта же самая волна мышечных сокращений двигает пищу из желудка дальше в тонкий кишечник, где питательные вещества всасываются.

Работа мозга также не обходится без участия волн. Но это не волновые сокращения мышц, а крошечные, длящиеся всего долю секунды электрохимические реакции – импульсация нейронов. Любые звуки являются акустическими волнами. Нам доступна лишь малая часть всех акустических волн – большая часть не воспринимается нашим ухом.

Также волны могут нести в себе информационную составляющую. Микроволновое излучение уже поведало много интересного о происхождении и составе Вселенной, а также позволило человечеству греть еду в «микроволновке», говорить по сотовому телефону, выходить с ноутбуков в Интернет, устанавливать беспроводные соединения с помощью Bluetooth, дало возможность GPS-навигации и осуществление связи Земли со спутниками в целом.

Помимо полезных и необходимых для нормальной жизнедеятельности волн встречаются волны губительные. Взрывная волна сильно влияет на деятельность мозга даже при отсутствии видимых внешних повреждений. Цунами уносят сотни тысяч жизней и смывают прибрежные районы, оставляя за собой полную разруху.

Исходя из всего перечисленного выше, можно сделать вывод, что знание закономерностей, природы, свойств колебаний и волн дает возможность улучшать качества жизни, выходить на новые технологические уровни, своевременно заботиться о здоровье человека и животных, предотвращать или предсказывать природные катаклизмы. На что и нацелено данное методическое пособие.

Раздел 1. Механические колебания

Колебательным движением (колебаниями) называют всякий процесс, который обладает свойством повторяемости во времени. Периодическим называется движение, при котором физические величины, характеризующие колебательную систему, через равные промежутки времени принимают одни и те же значения. При колебательном движение тело (материальная точка) перемещается вблизи устойчивого положения равновесия, отклоняясь то в одну, то в другую сторону. При этом через любую точку траектории, за исключением крайних, тело проходит как в прямом, так и в обратном направлении. Следовательно, отличительным признаком колебательного движения является его возвратность. Например, механическим колебательным движением является: движение тела, подвешенного на нити (маятник), колебания тела, подвешенного на пружине (пружинный маятник), колебания струн, вибрации фундаментов зданий. Таким образом, отличительными признаками колебательного движения являются: 1) повторяемость движения; 2) возвратность движения (движение как в прямом, так и в обратном направлении).

Для существования механических колебаний необходимо:

  • наличие силы, стремящейся возвратить тело в положение равновесия при малом смещении из этого положения;

  • достаточно малое трение в системе, поскольку, в противном случае, колебания быстро затухнут или вообще не возникнут.

Наиболее важными величинами, характеризующими механические колебания, являются:

  • число колебаний за некоторый промежуток времени t. Обозначается буквой N;

  • координата материальной точки или ее смещение (отклонение) — величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени. Обозначается буквой x, измеряется в метрах (м);

  • амплитуда — максимальное смещение тела или системы тел из положения равновесия. Обозначается буквой A или xmax, измеряется в метрах (м);

  • период — время совершения одного полного колебания. Обозначается буквой T, измеряется в секундах (с);

  • частота — число полных колебаний в единицу времени. Обозначается буквой ν, измеряется в герцах (Гц);

  • циклическая частота, число полных колебаний системы в течение 2π секунд. Обозначается буквой ω, измеряется в радиан в секунду (рад/с);

  • фаза — аргумент периодической функции, определяющий значение физической величины в любой момент времени t. Обозначается буквой φ, измеряется в радианах (рад);

  • начальная фаза — аргумент периодической функции, определяющий значение физической величины в начальный момент времени (t = 0). Обозначается буквой φ0, измеряется в радианах (рад).

Эти величины связаны между собой следующими соотношениями:

Тема 1. Гармонические колебания.

Гармонические колебания — это колебания, при которых координата (смещение) тела изменяется со временем по закону косинуса или синуса и описывается формулами:

Зависимость координаты от времени x(t) называется кинематическим законом гармонического колебания (законом движения). Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

Пусть тело совершает колебания по гармонические закону (φ0 = 0). На рисунке 1 представлен график зависимости координаты x от времени t.

Выясним, как изменяется проекция скорости колеблющейся точки со временем. Для этого найдем производную по времени от закона движения:

где — амплитуда проекции скорости на ось x. Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось x изменяется тоже по гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на π/2 (рис. 2).

Для выяснения зависимости ускорения ax(t) найдем производную по времени от проекции скорости:

(1)

где — амплитуда проекции ускорения на ось x.

При гармонических колебаниях проекция ускорения опережает смещение по фазе на π (рис.3).

Аналогично можно построить графики зависимостей x(t), υx(t) и ax(t), если 0 = 0).

Учитывая, что из уравнения (1) для ускорения можно записать

т.е. при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, ускорение направлено в сторону, противоположную смещению. Данное соотношение можно переписать в виде

Последнее равенство называют уравнением гармонических колебаний. Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором, а уравнение гармонических колебаний — уравнением гармонического осциллятора.