
- •Глава 1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Структура теоретической метрологии
- •3.3. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны, единиц физических величин
- •3.4.3. Поверочные схемы
- •Глава 4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.5. Правила округления результатов измерений
- •Глава 5. Систематические погрешности
- •5.1. Систематические погрешности и их классификация
- •5.2. Способы обнаружения и устранения систематических погрешностей
- •Глава 6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.3. Основные законы распределения
- •6.3.1. Общие сведения
- •6.3.2. Трапецеидальные распределения
- •6.3.3. Экспоненциальные распределения
- •6.3.4. Нормальное распределение (распределение Гаусса)
- •6.3.6. Семейство распределений Стъюдента
- •Глава 7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •Глава 8. Обработка результатов измерений
- •8.1. Прямые многократные измерения
- •8.1.1. Равноточные измерения
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •Глава 9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей
- •9.2. Суммирование систематических погрешностей
- •9.3. Суммирование случайных погрешностей
- •9.4. Суммирование систематических и случайных погрешностей
- •9.5. Критерий ничтожно малой погрешности
- •Глава 11. Средства измерений
- •11.1. Понятие о средстве измерений
- •11.2. Статические характеристики и параметры средств измерений
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4.Классификация средств измерений
- •11.5. Элементарные средства измерений
- •11.6. Комплексные средства измерений
- •11.6.1. Измерительные приборы и установки
- •11.6.2. Измерительные системы и измерительно-вычислительные комплексы
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2.Структурная схема прямого преобразования
- •11.7.3.Уравновешивающее преобразование
- •11.7.4. Расчет измерительных каналов средств измерений
- •Глава 12. Метрологические
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики погрешностей средств измерений
- •12.4. Характеристики чувствительности средств
- •Измерений к влияющим величинам.
- •Неинформативные параметры выходного
- •Сигнала
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •12.7. Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Расчет погрешностей средств измерений по нормированным метрологическим характеристикам
- •12.9.Классы точности средств измерений
- •Глава 13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •13.5. Метрологическая надежность и межповерочные интервалы
- •Приложение 1. Статистические таблицы
- •Глава 1. Предмет и задачи метрологии 1
- •Глава 12. Метрологические 100
- •Глава 13. Метрологическая надежность средств измерений 126
11.7.3.Уравновешивающее преобразование
Особенность уравновешивающего или, как еще говорят, компенсационного преобразования состоит в том, что выходная величина средства измерений Uвых (рис. 11.24) подвергается обратному преобразованию в величину U'm, однородную с входной величиной U. Следовательно, используется отрицательная обратная связь.
Средства измерений, имеющие такую структуру, могут работать в двух режимах: неполного уравновешивания, когда сигнал рассогласования U = Uвх - U'm О, и полного уравновешивания, когда ди = О. Рассмотрим сначала первый режим.
Цепь прямого преобразования
Цепь обратного преобразования
Рис. 11.24. Схема уравновешивающего преобразования
Для вывода уравнения преобразования Uвых = (Uвх) будем считать справедливыми те упрощающие предположения, которые были приняты при анализе схемы прямого преобразования. При отсутствии помех сигнал рассогласования U поступает на вход измерительной цепи прямого преобразования. Ее выходной сигнал
где Ki — коэффициент преобразования i-го структурного элемента цепи прямого преобразования, является входным для цепи обратного преобразования. Ее выходное напряжение
где i — коэффициент преобразования i-го структурного элемента цепи обратного преобразования.
Коэффициент преобразования СИ с учетом двух последних уравнений имеет вид
а уравнение преобразования соответственно
(11.11)
Следовательно, выходной сигнал зависит от коэффициентов преобразования цепей прямого и обратного преобразования. При |ЗК»1 выходное напряжение Uвых Uвых/, цепь прямого преобразования практически не влияет на работу прибора, поэтому нестабильность коэффициентов преобразования Кi не вызывает погрешности измерения.
Относительная мультипликативная погрешность, обусловленная нестабильностью коэффициентов преобразования К и , находится из уравнения (11.11):
где К, — суммарные погрешности, обусловленные нестабильностью коэффициентов К и . При К >> 1 погрешность Uвых(K) от нестабильности коэффициентов преобразования прямой цепи уменьшается в (1 + К) раз. Погрешность Uвых(), обусловленная нестабильностью коэффициентов преобразования цепи обратной связи, при этих условиях почти полностью входит в суммарную погрешность. Следовательно, в прямой цепи можно использовать активные нестабильные преобразователи, например усилители, но при этом необходимо выполнять условие К >> 1. Коэффициент обратного преобразования , наоборот, должен иметь высокую стабильность во времени.
Аддитивная погрешность, обусловленная дрейфом нуля, наводками, порогом чувствительности звеньев и другими аналогичными причинами, моделируется путем введения в структурную схему (рис. 11,24) дополнительных сигналов AU01, AU02, …, AU0n, U'01, U'02,..., U'0k. Абсолютная аддитивная погрешность, приведенная к входу СИ,
В режиме полного уравновешивания рассогласование U=U—U'm = 0. Это возможно, если в цепи прямого преобразования имеется интегрирующий элемент с функцией преобразования вида
например электродвигатель, интегратор, выполненный на операционном усилителе.
Уравнение преобразования СИ для этого случая имеет вид Uвых = Uвx/. Коэффициент преобразования полностью определяется параметрами цепи обратной связи и не зависит от параметров цепи прямого преобразования.
Мультипликативная относительная погрешность, связанная с нестабильностью коэффициентов преобразования блоков i,
зависит только от свойств цепи обратной связи.
Аддитивная погрешность схем с полным уравновешиванием почти целиком обуславливается порогом чувствительности звеньев Un — минимальным сигналом на входе, способным вызвать сигнал на выходе (см. рис. 11.23, б). При входном сигнале меньше Un сигнал на выходе не появляется. Следовательно, уравновешивание схемы наступает при U—U'm= ± Un. При этом играет роль порог чувствительности звеньев в цепи прямого преобразования до интегрирующего звена включительно.
Приведенная к входу абсолютная аддитивная погрешность
где U0i - порог чувствительности интегрирующего звена. Для уменьшения погрешности, обусловленной порогом чувствительности звеньев, следует увеличивать коэффициенты преобразования звеньев прямой цепи. В приведенных формулах фигурирует суммарная погрешность — сумма случайной и систематической составляющих.
Схемы СИ зачастую могут быть комбинированными, т.е. содержать цепь прямого преобразования, звенья которой охвачены отрицательной обратной связью. Следует отметить, что принцип построения структурной схемы влияет на многие параметры СИ, такие как входные и выходные сопротивления, динамические и другие характеристики.