
- •Глава 1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Структура теоретической метрологии
- •3.3. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны, единиц физических величин
- •3.4.3. Поверочные схемы
- •Глава 4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.5. Правила округления результатов измерений
- •Глава 5. Систематические погрешности
- •5.1. Систематические погрешности и их классификация
- •5.2. Способы обнаружения и устранения систематических погрешностей
- •Глава 6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.3. Основные законы распределения
- •6.3.1. Общие сведения
- •6.3.2. Трапецеидальные распределения
- •6.3.3. Экспоненциальные распределения
- •6.3.4. Нормальное распределение (распределение Гаусса)
- •6.3.6. Семейство распределений Стъюдента
- •Глава 7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •Глава 8. Обработка результатов измерений
- •8.1. Прямые многократные измерения
- •8.1.1. Равноточные измерения
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •Глава 9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей
- •9.2. Суммирование систематических погрешностей
- •9.3. Суммирование случайных погрешностей
- •9.4. Суммирование систематических и случайных погрешностей
- •9.5. Критерий ничтожно малой погрешности
- •Глава 11. Средства измерений
- •11.1. Понятие о средстве измерений
- •11.2. Статические характеристики и параметры средств измерений
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4.Классификация средств измерений
- •11.5. Элементарные средства измерений
- •11.6. Комплексные средства измерений
- •11.6.1. Измерительные приборы и установки
- •11.6.2. Измерительные системы и измерительно-вычислительные комплексы
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2.Структурная схема прямого преобразования
- •11.7.3.Уравновешивающее преобразование
- •11.7.4. Расчет измерительных каналов средств измерений
- •Глава 12. Метрологические
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики погрешностей средств измерений
- •12.4. Характеристики чувствительности средств
- •Измерений к влияющим величинам.
- •Неинформативные параметры выходного
- •Сигнала
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •12.7. Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Расчет погрешностей средств измерений по нормированным метрологическим характеристикам
- •12.9.Классы точности средств измерений
- •Глава 13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •13.5. Метрологическая надежность и межповерочные интервалы
- •Приложение 1. Статистические таблицы
- •Глава 1. Предмет и задачи метрологии 1
- •Глава 12. Метрологические 100
- •Глава 13. Метрологическая надежность средств измерений 126
Глава 8. Обработка результатов измерений
8.1. Прямые многократные измерения
8.1.1. Равноточные измерения
Прямые многократные измерения делятся на равно- и неравноточные. Теоретические основы и методика объединения результатов неравноточных измерений подробно рассмотрены в [3]. Равно точными называются измерения, которые проводятся средствами измерений одинаковой точности по одной и той же методике при неизменных внешних условиях. При равноточных измерениях СКО результатов всех рядов измерений равны между собой.
Перед проведением обработки результатов измерений необходимо удостовериться в том, что данные из обрабатываемой выборки статистически подконтрольны, группируются вокруг одного и того же центра и имеют одинаковую дисперсию. Устойчивость изменений часто оценивают интуитивно на основе длительных наблюдений. Однако существуют математические методы решения поставленной задачи — так называемые методы проверки однородности [3].
Задача обработки результатов многократных измерений заключается в нахождении оценки измеряемой величины и доверительного интервала, в котором находится ее истинное значение.
Исходной информацией для обработки является ряд из n (n > 4) результатов измерений x1, х2, х.г,..., хn, из которых исключены известные систематические погрешности, — выборка. Число n зависит как от требований к точности получаемого результата, так и от реальной возможности выполнять повторные измерения.
8.2. Однократные измерения
Прямые многократные измерения в большей мере относятся к лабораторным измерениям. Для производственных процессов более характерны однократные измерения. Однократные прямые измерения являются самыми массовыми и проводятся, если: при измерении происходит разрушение объекта измерения, отсутствует возможность повторных измерений, имеет место экономическая целесообразность. Эти измерения возможны лишь при определенных условиях:
• объем априорной информации об объекте измерений такой, что модель объекта и определение измеряемой величины не вызывают сомнений;
• изучен метод измерения, его погрешности либо заранее устранены, либо оценены;
• средства измерений исправны, а их метрологические характеристики соответствуют установленным нормам.
За результат прямого однократного измерения принимается полученная величина. До измерения должна быть проведена априорная оценка составляющих погрешности с использованием всех доступных данных. При определении доверительных границ погрешности результата измерений доверительная вероятность принимается, как правило, равной 0,95.
Составляющими погрешности прямых однократных измерений являются:
• погрешности СИ, рассчитываемые по их метрологическим характеристикам;
• погрешность используемого метода измерений, определяемая на основе анализа в каждом конкретном случае;
• личная погрешность, вносимая конкретным оператором. Если последние две составляющие не превышают 15% погрешности СИ, то за погрешность результата однократного измерения принимают погрешность используемого СИ. Данная ситуация весьма часто имеет место на практике.