Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Metodichka_Optika.doc
Скачиваний:
94
Добавлен:
12.03.2015
Размер:
4.8 Mб
Скачать

Применение фотоэффекта

На явлении фотоэффекта основано действие фотоэлектронных приборов, получивших разнообразное применение в разных областях науки и техники.

Фотоэлементы – приемники излучения, работающие на основе фотоэффекта и преобразующие энергию излучения в электрическую.

В зависимости от вида осуществляемого фотоэффекта, фотоэлементы можно разделить на три группы:

1. Фотоэлементы с внешним фотоэффектом. Простейшим из них является вакуумный фотоэлемент (рис.1). Он представляет собой откачанный стеклянный баллон, внутренняя поверхность которого (за исключением окна для доступа излучения) покрыта фоточувствительным слоем, служащим фотокатодом. В качестве анода обычно используется кольцо или сетка, помещаемая в центре баллона. Выводы катода и анода, вмонтированные в пластмассовый цоколь, присоединяются к источнику напряжения. Если на фотокатод подействовать светом, способным вырывать электроны, то по цепи пойдет фототок, интенсивность которого увеличивается при наличии между катодом и анодом ускоряющего напряжения.

Вакуумные фотоэлементы безынерционны, для них наблюдается пропорциональность между фототоком и интенсивностью излучения. Эти свойства позволяют использовать вакуумные фотоэлементы в качестве фотометрических приборов (например, фотоэлектрический экспонометр, люксметр – измеритель освещенности, и т.д.).

Для увеличения интегральной чувствительности вакуумных фотоэлементов баллон заполняется разреженным газом (Ar или Ne при давлении ~110 Па). Такой фотоэлемент называется газонаполненным. Фототок в таком элементе усиливается вследствие столкновительной ионизации молекул газа фотоэлектронами.

Рис. 1. Электрическая схема включения вакуумного фотоэлемента.

2. Фотоэлементы с внутренним фотоэффектом, называемые полупроводниковыми фотоэлементами или фотосопротивлениями (фоторезисторами), обладают гораздо большей интегральной чувствительностью, чем вакуумные. Для их изготовления используют PbS, CdS, PbSe и некоторые другие полупроводники. Если фотокатоды вакуумных фотоэлементов имеют красную границу фотоэффекта не выше 1,1 мкм, то применение фотосопротивлений позволяет проводить измерения в дальней инфракрасной области спектра (до 34 мкм), а также в областях рентгеновского и гамма- излучений. Кроме того, они малогабаритны и имеют низкое напряжение питания. Недостаток фотосопротивлений – их заметная инерционность, поэтому они непригодны для регистрации быстропеременных световых потоков.

3. Фотоэлементы с вентильным фотоэффектом, называемые вентильными фотоэлементами (фотоэлементами с запирающим слоем), обладая (подобно элементам с внешним фотоэффектом) строгой пропорциональностью фототока интенсивности излучения, имеют большую по сравнению с ними интегральную чувствительность и не нуждаются во внешнем источнике э.д.с. К числу вентильных фотоэлементов относятся германиевые, кремниевые, селеновые, купоросные, сернисто-серебряные и др. Кремниевые и другие вентильные фотоэлементы применяются для создания солнечных батарей, непосредственно преобразующих световую энергию в электрическую.

4. Фотоэлектронные умножители (ФЭУ), в которых сочетается внешний фотоэффект с эффектом вторичной электронной эмиссии, происходящей на нескольких динодах. Эти приборы обладают чувствительностью, на несколько порядков большей, чем у фотоэлементов.

Характеристики фотоэлемента

Основными характеристиками фотоэлемента являются:

1. Вольтамперная характеристика – зависимость силы фототока от напряжения на фотоэлементе при неизменной освещенности фотокатода.

2. Спектральная характеристика – зависимость силы фототока от длины волны падающего излучения при неизменной освещенности и неизменном напряжении на фотоэлементе.

3. Световая характеристика – зависимость силы фототока от величины светового потока данной длины волны при неизменном напряжении на фотоэлементе.

4. Интегральная чувствительность – отношение силы фототока с суммарной мощности излучения в выбранном диапазоне длин волн.

Вольтамперная характеристика фотоэлемента с внешним фотоэффектом

На рис.2 приведена вольтамперная характеристика вакуумного фотоэлемента, соответствующая двум различным освещенностям фотокатода (частота падающего света в обоих случаях одинакова). По мере увеличения напряжения фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение фототока Iнасфототок насыщения – определяется

таким значением напряжения, при котором все электроны, испускаемые катодом, достигают анода. Iнас=e*n (n - число электронов, испускаемых фотокатодом в ед. времени).

Из вольтамперной характеристики следует, что при напряжении, равном нулю, фототок не исчезает, т.к. электроны, выбитые светом из катода, обладают некоторой начальной кинетической энергией (в соответствие с уравнением (1)) и могут достигнуть анода без внешнего поля. Для того, чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение U0. При U=U0 ни один из электронов, даже обладающий при вылете из катода максимальной скоростью vmax, не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

(3)

Таким образом, измерив U0, можно найти максимальное значение скорости и кинетической энергии фотоэлектронов. С учетом выражений (1,2) уравнение (3) можно представить в виде

(4)

Вольтамперные характеристики газонаполненных фотоэлементов (рис.3) резко отличаются от характеристик вакуумных фотоэлементов. Для газонаполненных фотоэлементов вольтамперная характеристика не имеет тока насыщения (кривая зависимости силы фототока от напряжения пологая вначале, затем круто поднимается вверх). Это объясняется процессом ионизации инертного газа, находящегося внутри колбы фотоэлемента.

Спектральная характеристика фотоэлемента

В зависимости от вида спектральной характеристики различают нормальный и селективный (избирательный) фотоэффект. Фотоэффект называется нормальным, если величина фототока убывает с увеличением длины волны (см. рис.4а). Селективным или избирательным называется фотоэффект, при котором сила фототока имеет резко выраженные максимумы для определенных длин волн, характерных для данного вещества фотокатода (см. рис.4б). По спектральной характеристике можно судить, с каким источником лучистой энергии наиболее целесообразно использовать данный фотоэлемент.

а

б

Рис.4. Спектральные характеристики фотоэлементов с нормальным (а) и селективным (б) фотоэффектом.

Изучение характеристик фотоэлемента ЦГ-4

В настоящей работе требуется снять вольтамперную и спектральную характеристики цезиевого газонаполненного фотоэлемента ЦГ-4, в котором имеет место явление внешнего фотоэффекта. Оба эксперимента проводятся с использованием монохроматора УМ-2.

Принципиальная схема призменного монохроматора приведена на рис.5. Лучи света от лампочки накаливания (1) через защитное стекло кожуха лампы (2) и конденсор (3) поступают в щель коллиматора (4). После выхода из объектива (5) параллельный пучок света направляется на диспергирующую призму (6), из которой отбирается пучок, направленный под углом 900 по отношению к падающему пучку. Далее свет идет в выходную трубу монохроматора, которая состоит из объектива (9), выходной щели (10) и защитного стекла (11).

Призменный столик (8), связанный с поворотным механизмом, имеет микрометрический винт, на барабане (7) которого нанесены деления в градусах. Вращая призменный столик с помощью барабана на определенные углы относительно падающего света, получают в выходной щели свет с требуемой длиной волны. После выхода из щели монохроматический свет попадает на фотоэлемент (12). Пересчет делений барабана в длины волн может быть сделан с помощью данных, приведенных в табл.2. Монохроматор УМ-2 позволяет получать монохроматический свет в диапазоне 380-1000 нм.

Распределение интенсивности излучения лампы накаливания (1) зависит от длины волны. Поэтому, освещая исследуемый фотоэлемент светом с длинами волн 1, 2, 3, … k, указанными в табл.2, и отмечая соответствующие им отклонения светового «зайчика» гальванометра n1, n2, n3, … nk, можно получить лишь искаженную спектральную характеристику данного фотоэлемента. Для определения распределения интенсивности в спектре излучения лампы используется селеновый фотоэлемент, обладающий тем свойством, что его спектральная характеристика не зависит от длины волны падающего излучения. Фототок, возникающий в селеновом фотоэлементе, пропорционален только интенсивности падающего света. Если селеновый фотоэлемент освещать светом тех же длин волн (см. табл.2) 1, 2, 3, … k, то по соответствующим отклонениям «зайчика» гальванометра n1', n2', n3', … nk' мы можем судить об интенсивности различных монохроматических пучков. Отношения n1/n1', n2/n2', n3/n3', …, nk/nk' будут характеризовать величину фототока, возникающего в исследуемом фотоэлементе ЦГ-4, для различных монохроматических пучков.

I. Снятие вольтамперной характеристики фотоэлемента ЦГ-4.

Порядок выполнения работы

1. Ознакомиться со схемой включения фотоэлемента ЦГ-4 согласно рис.1.

3. Поместить за выходной щелью монохроматора в гнездо специальной панели исследуемый цезиевый фотоэлемент, подключить его к внешнему источнику постоянного напряжения. Отметим, что гнезда панели уже подключены к гальванометру. Фотоэлемент и входную щель накрыть светонепроницаемым чехлом для защиты от постороннего света.

2. Включить источник света и с помощью монохроматора найти спектральный участок, для которого чувствительность фотоэлемента максимальна. Поворотом ручки потенциометра изменять напряжение на фотоэлементе от 0 до 240 В с интервалом в 10 В. Показания микроамперметра при каждом значении рабочего напряжения занести в табл.1.

3. Аналогичные измерения провести при понижении рабочего напряжения на фотоэлементе от 240 В до 0 В с тем же интервалом.

Таблица 1.

Сила фототока фотоэлемента ЦГ-4 в зависимости от напряжения на нем.

Рабочее напряжение

U, В

Сила фототока

При повышении

напряжения

При понижении

напряжения

Среднее

значение

0

10

20

30

...

230

240

4. На основании средних значений силы фототока построить график I=f(U), выражающий собой вольтамперную характеристику.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]