
- •Оглавление
- •Глава 1. Введение в электроэнергетику. Цели и задачи курса. Основные понятия. Номинальные напряжения
- •Физическая природа электричества
- •Свойства электроэнергии
- •Цель и задачи курса
- •Электрическая сеть, как часть электрической системы
- •Номинальные напряжения
- •Область использования номинальных напряжений
- •Глава 2. Классификация электрических сетей
- •Глава 3. Основные сведения о конструкциях линий электропередач
- •3.1. Воздушные линии электропередас (влэп)
- •3.2. Кабельные линии электропередач (клэп)
- •Глава 4. Схемы замещения и параметры элементов электрических сетей
- •4.1. Активное сопротивление
- •4.2. Индуктивное сопротивление
- •4.3. Активная проводимость
- •4.4. Реактивная (емкостная проводимость)
- •4.5. Схема замещения лэп
- •Глава 5. Параметры схемы замещения трансформаторов
- •5.1. Общие сведения
- •5.2. Двухобмоточный трансформатор
- •5.3 Трехобмоточный трансформатор
- •5.4. Двухобмоточный трансформатор с расщепленной обмоткой низкого напряжения
- •5.5. Автотрансформатор
- •100 % / 100 % / Α %.
- •Глава 6. Характеристики основных электроприемников
- •6.1. Характеристики основных электроприемников
- •6.2. Графики нагрузки электроприемников
- •Глава 7. Потери мощности и электроэнергии в элементах сети
- •7.1. Потери мощности в элементах сети
- •7.2. Расчет потерь мощности в линиях электропередач
- •7.3. Расчет потерь мощности в лэп с равномерно распределенной нагрузкой
- •7.4. Расчет потерь мощности в трансформаторах
- •7.5. Приведенные и расчетные нагрузки потребителей
- •7.6. Расчет потерь электроэнергии
- •Мероприятия по снижению потерь мощности
- •Глава 8. Векторные диаграммы лэп
- •8.1. Векторная диаграмма лэп 35 кВ с одной нагрузкой
- •8.2. Векторная диаграмма лэп 35 кВ с несколькими нагрузками
- •8.3. Векторная диаграмма лэп 110 кВ с одной нагрузкой
- •Глава 9. Расчет режимов электрических сетей
- •9.1. Задача расчета режимов. Основные допущения
- •9.2. Метод расчета режима при заданном напряжении в конце лэп
- •9.3. Последовательность расчета
- •9.4. Расчет режима при заданном напряжении в начале лэп (на источнике питания)
- •9.5. Расчет сетей разных номинальных напряжений
- •Глава 10. Расчет местных сетей (сетей напряжением ) по потере напряжения
- •10.1. Допустимые потери напряжения в линиях местных сетей
- •10.2. Допущения, положенные в основу расчета местных сетей
- •10.3. Определение наибольшей потери напряжения
- •В неразветвленной сети наибольшая потеря напряжения – это потеря напряжения от ип до конечной точки сети. В разветвленной сети наибольшая потеря напряжения определяется следующим образом:
- •10.4. Частные случаи расчета местных сетей
- •Потеря напряжения в лэп с равномерно распределенной нагрузкой
- •Глава 11. Расчет сечений проводов по допустимой потере напряжения
- •11.1. Общие положения методов
- •11.2. Расчет сечений проводов из условия постоянства сечений на участках
- •11.3. Расчет сечений проводов из условия минимального расхода проводникового материала
- •11.4. Расчет сечений проводов из условия минимума потерь мощности в сети
- •11.5. Этапы расчета при разных условиях
- •11.6. Сравнительная характеристика методов
- •Глава 12. Расчет режимов простых замкнутых сетей
- •12.1. Расчет линий с двухстронним питанием
- •12.2. Частные случаи расчета простых замкнутых сетей
- •Глава 13. Расчет режимов сложнозамкнутых сетей. Методы преобразования сети.
- •13.1. Суть метода преобразования
- •13.2. Прием 1. Замена площади сечения проводов участка сети эквивалентной
- •13.3. Прием 2. Замена параллельных линий при отсутствии на них нагрузок эквивалентной линей
- •13.4. Прием 3. Замена источников напряжения, присоединенных к одной точке сети, одним эквивалентным
- •13.5. Прием 4. Преобразование треугольника сопротивлений в эквивалентную звезду
- •13.6. Прием 5. Перенос нагрузок в другие точки сети
- •Глава 14. Баланс мощностей в энергосистеме
- •Глава 15. Реактивная мощность в энергосистеме. Потребители реактивной мощности. Выработка реактивной мощности генераторами эс
- •15.1. Общие положения
- •15.2. Регулирующий эффект нагрузки
- •15.3. Потребители реактивной мощности
- •15.4. Генерация реактивной мощности генераторами эс
- •Глава 16. Реактивная мощность в энергосистеме. Компенсация реактивной мощности.
- •16.1. Общие положения
- •16.2. Синхронные компенсаторы
- •16.3. Батареи конденсаторов
- •16.4 Поперечная компенсация
- •16.5. Продольная компенсация
- •16.6. Статические источники реактивной мощности
- •Глава 17. Методы регулирования напряжения. Устройства регулирования напряжения
- •17.1. Общие положения
- •17.2. Регулирование напряжения в центрах питания
- •17.3. Метод встречного регулирования
- •17.4. Регулирование напряжения на электростанциях
- •17.5. Регулирование напряжения на понижающих подстанциях
- •17.6. Устройство рпн двухобмоточного трансформатора
- •17.7. Устройство рпн автотрансформатора
- •Глава 18. Методы регулирования напряжения. Устройства регулирования напряжения (продолжение)
- •18.1. Выбор ответвлений двухобмоточного трансформатора
- •18.2. Выбор ответвлений трехобмоточного трансформатора и автотрансформатора
- •Глава 19. Методы регулирования напряжения. Устройства регулирования напряжения (продолжение)
- •19.1. Регулирование напряжения при помощи линейных регуляторов
- •19.2. Регулирование напряжения при помощи устройств продольной компенсации
- •19.3. Регулирование напряжения при помощи устройств поперечной компенсации
- •Глава 20. Экономичность режимов электрических систем
- •20.1. Общие сведения
- •20.2. Оптимальное распределение активной мощности между тепловыми электростанциями
- •20.3. Оптимальное распределение мощности в замкнутых сетях
- •20.4. Принудительное перераспределение мощности
- •20.5. Настройка сети
- •20.5. Размыкание пути протекания уравнительного тока, то есть размыкание контуров сети
- •20.6. Экономичный режим работы трансформаторов
Глава 4. Схемы замещения и параметры элементов электрических сетей
В состав электрической сети входят различные по назначению и конструкции элементы (ЛЭП, трансформаторы и т.д.). Однако на каждом из участков сеть можно охарактеризовать одинаковым набором параметров, отражающих свойства элементов и различающихся между собой только количественно.
Каждый элемент электрической сети представляется в виде схемы замещения. Расчётная схема электрической сети, таким образом, образуется в результате объединения схем замещения отдельных элементов с учётом последовательности соединения их в сеть.
Строго говоря, любая ЛЭП обладает большим количеством равномерно распределённых вдоль неё бесконечно малых активных и реактивных сопротивлений и проводимостей. Точный их учёт необходим при расчёте длинных линий (ВЛЭП больше 300 км, для КЛЭП больше 50 км). В практических расчётах ограничиваются упрощёнными методами и считают, что ЛЭП обладает не распределёнными, а сосредоточенными сопротивлениями и проводимостями.
4.1. Активное сопротивление
Активное сопротивление зависит от материала, сечения и температуры. Активное сопротивление обусловливает тепловые потери проводов и кабелей. Определяется материалом токоведущих проводников и площадью их сечения.
Различают
сопротивление проводника постоянному
току (омическое) и переменному току
(активное). Активное сопротивление
больше омического ()
из-за поверхностного эффекта. Переменное
магнитное поле внутри проводника
вызывает противоэлектродвижущую силу,
благодаря которой происходит
перераспределение тока по сечению
проводника. Ток из центральной его части
вытесняется к поверхности. Таким образом,
ток в центральной части провода меньше,
чем у поверхности, то есть сопротивление
провода возрастает по сравнению с
омическим. Поверхностный эффект резко
проявляется при токах высокой частоты,
а также в стальных проводах (из-за высокой
магнитной проницаемости стали).
Для
ЛЭП, выполненных из цветного металла,
поверхностный эффект на промышленных
частотах незначителен. Следовательно,
.
Обычно
влиянием колебания температуры на
проводника в расчётах пренебрегают.
Исключение составляют тепловые расчеты
проводников. Пересчет величины
сопротивления выполняют по формуле:
,
где
– активное сопротивление при температуре
;
текущее
значение температуры.
Активное сопротивление зависит от материала проводника и сечения:
,
где ρ – удельное сопротивление, Ом мм2/км;
l – длина проводника, км;
F – сечение проводника, мм2.
Сопротивление одного километра проводника называют погонным сопротивлением:
,
где
−
удельная
проводимость материала проводника, км
См/мм2.
Для
меди
км∙См/мм2,
для алюминия
=
31.710-3
км∙См/мм2.
На
практике значение r0
определяют по соответствующим таблицам,
где они указаны для
.
Величина активного сопротивления участка сети рассчитывается:
.
Активное сопротивление стальных проводов намного больше омического из-за поверхностного эффекта и наличия дополнительных потерь на гистерезис (перемагничивание) и от вихревых токов в стали:
,
где
– омическое сопротивление одного
километра провода;
–активное
сопротивление, которое определяется
переменным магнитным полем внутри
проводника,
.
Изменение активного сопротивления стальных проводников показано на рисунке 4.1.
При
малых величинах тока индукция прямо
пропорциональна току. Следовательно,
r0
увеличивается, затем наступает магнитное
насыщение: индукция и r0
практически не изменяются. При дальнейшем
увеличении тока r0
уменьшается из-за снижения магнитной
проницаемости стали ().
|
Рисунок 4.1 – Зависимость активного сопротивления стальных проводников от величины тока: 1 – постоянному току; 2 – переменному току |
Зависимость
имеет вид (см. рис. 4.2):
|
Рисунок 4.2 – Зависимость погонного активного сопротивления от сечения проводника |
Из
рис. 4.2 видно, что при малых значениях
сечения
имеет большое значение. При увеличении
сечения величина
уменьшается.