
- •1.Расчёт режима эц методом контурных токов.
- •2.Расчёт режима эц методом узловых потенциалов
- •3.Расчёт режима эц методом эквивалентного генератора
- •4.Расчёт режима эц методом наложения
- •5.Расчёт режима эц методом законов Кирхгофа
- •2.1.2. Параметры гармонических колебаний
- •8.Метод комплексных амплитуд в тэц. Область его применения.
- •9.Описание эц в режиме постоянного тока и гармонического тока.
- •11.Понятие баланса мощности в эц при негармонической периодической эдс
- •12.Понятие комплексного сопротивления эц
- •13.Ачх и фчх в описании эц
- •14.Резонансные явления в эц. Основные виды резонансов в эц
- •Резонанс напряжений
- •15.Схема и основные параметры последовательного колебательного контура
- •16.Схема и основные параметры параллельного колебательного контура
- •17.Анализ эц при негармоническом периодическом воздействии.
- •18.Применение рядов Фурье в анализе работы эц.
- •19.Форма представления ряда Фурье (одна из трёх по выбору)
- •Тригонометрическая форма
- •Вещественная форма
- •Комплексный (экспоненциальный) ряд Фурье
- •20.Спектры гармонического и негармонического колебаний. Графическая иллюстрация.
- •21.Классический метод решения при анализе переходных процессов в эц
- •22.Вынужденные и свободные составляющие переходных процессов
- •23.Виды начальных условий и законы коммутации.
- •24.Диффенцирующие и интегрирующие цепи. Частотные характеристики этих цепeй
- •25.Процедура и этапы расчёта эц операторным методом.
- •26.Методы определения оригинала тока или напряжения по известному изображению.
- •27.Единичная функция (включения) её связь с импульсной функцией. 1-14
- •28.Переходная характеристика и её связь с импульсным откликом 1-15
- •29.Определение параметра скважность импульсной последовательности. Влияние скважности на форму спектра.
- •30.Определение формы спектра производной периодического сигнала по известной форме спектра этого сигнала.
- •31.Интегральное преобразование Фурье. Его отличие от ряда Фурье с позиции тэц.
- •32.Прямое и обратное преобразование Фурье. Их связь с характеристиками эц.
- •33.Условие безыскажённой передачи сигнала по эц.
- •34. Теорема запаздывания в преобразовании Фурье и её применение в тэц.
- •35.Теорема о свёртке и её применение в тэц.
- •36.Физический смысл равенства Парсеваля и его применение
- •37.Дискретизация непрерывного сигнала. Теорема Котельникова.
- •38.Связь спектров непрерывного сигнала до и после дискретизации.
- •39.Условие безыскажённого восстановления непрерывного сигнала из дискретизированного.
- •40.Определение дпф. Область применения дпф. Прямое и обратное дпф
- •41.Основные свойства дпф. Операции циклической свёртки и циклического сдвига.
- •42.Эффект растекания дпф. Средства борьбы с растеканием.
- •43.Алгоритмы бпф их виды и роль в цифровой обработке сигналов.
- •44.Эффективность бпф и теоретические основы алгоритмов
- •45.Классификация основных видов частотно-избирательных фильтров. Частотные характеристики.
- •46.Рабочие параметры частотно-избирательных фильтров. Графическая иллюстрация этих параметров.
- •47.Нереализуемость идеальных фильтров на примере идеального фнч.
- •48.Дифференциальные уравнения и передаточные функции. Нули и полюса передаточной функции.
- •49.Условия физической реализуемости и устойчивости передаточной функции.
- •50.Полиномиальные фильтры. Основные типы: фильтры Баттерворта и Чебышева.
- •51.Процедуры синтеза полиномиальных фильтров. Определение порядка фильтра.
- •52.Нормированные и денормированные частотные характеристики фильтров прототипов. Переход от фнч прототипа к фвч фильтру. Нормирование параметров фильтра и преобразование частоты
- •Понятие фнч-прототипа
- •53.Активные rc фильтры. Преимущества и недостатки arc фильтров на примере схем с операционными усилителями.
- •54.Цепи с сосредоточенными и распределёнными параметрами. Первичные параметры длинных линий, их физический смысл.
- •55.Уравнение передачи однородной длинной линии. Падающие и отражённые волны.
- •56.Вторичные параметры длинных линий. Входное сопротивление длинной линии.
13.Ачх и фчх в описании эц
ЧАСТОТНЫЕ И ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
Комплексная передаточная функция цепи:
К
омплексная
передаточная функция
цепи не зависит от входного воздействия,
а определяется только структурой цепи
и параметрами её элементов. Для простоты
вычислений допустим, что на вход цепи
подаётся гармонический сигнал,
определяемый значением комплексной
амплитуды:
.
Тогда комплексное амплитудное значение
тока в контуре будет равно:
,
а комплексное амплитудное значение
напряжения на выходе цепи:
.
Для схемы на рисунке 3.7(1)
,
.
Комплексная передаточная функция цепи:
Эта функция может быть представлена в показательной форме:
.
Амплитудно-частотная характеристика (АЧХ) – это зависимость модуля комплексной функции от частоты. АЧХ передаточной функции по напряжению:
.
Фазочастотная характеристика (ФЧХ) – это зависимость аргумента комплексной функции от частоты. ФЧХ передаточной функции по напряжению:
.
Графики АЧХ и ФЧХ показаны на рисунке 3.8.
14.Резонансные явления в эц. Основные виды резонансов в эц
На всякий
Резонанс в электрической цепи – это резкое возрастание амплитуды внутренних колебаний системы за счет совпадения частоты внутренних колебаний с частотой внешнего воздействия.
Резонансом в
электрических цепях называется режим
участка электрической цепи, содержащей
индуктивный и емкостной элементы, при
котором разность фаз между напряжением
и током равна нулю
.
Режим резонанса может быть получен при
изменении частоты
питающего
напряжения или изменением параметров
элементов L и С.
При
последовательном соединении возникает
резонанс напряжения.
Последовательное
соединение R,
L, C.
Резонанс токов через реактивные элементы
Резонанс токов возникает при параллельном соединении реактивных сопротивлений с одинаковыми характеристиками в цепях с переменным током. Во время резонанса токов реактивная индуктивная проводимость приравнивается к реактивной емкостной проводимости.
Колебания контура с определенной частотой совпадают с частотой колебаний источника.
Простейшим примером цепи, в которой может произойти резонанс токов, есть параллельное соединение катушки с конденсатором.
Для обеспечения резонанса силы тока или напряжения в цепи необходима ее проверка с целью определения суммарного сопротивления и проводимости. Кроме того, ее мнимая часть должна равняться нулю.
Резонанс напряжений
Резонанс напряжений имеет место в цепи переменного тока в случае последовательного соединения активного RR, емкостного CC и индуктивного LL компонентов. Резонанс напряжений состоит в совпадении внутренних колебаний источника и внешних колебаний контура. Резонанс напряжений применяется с пользой, но бывает и опасен. Например, данное явление применяют в радиотехнике, а опасность его состоит в том, что при резких скачках напряжения может произойти поломка оборудования и даже его возгорание.
Резонанс напряжения достигают несколькими путями:
подбирая индуктивность катушки;
подбирая емкость конденсатора;
подбирая угловую частоту ω0ω0.
Эти величины подбирают с помощью таких формул:
L0=1/ω2CL0=1/ω2C
C0=1/ω2L
Частота ω0 – это резонансная величина. При постоянных напряжении и активном сопротивлении в цепи сила тока в процессе резонанса напряжения наибольшая и равняется отношению напряжения к активному сопротивлению. То есть, сила тока полностью не зависима от реактивного сопротивления. Если реактивные сопротивления индукции и емкости одинаковы и по своей величине превышают активное сопротивление, тогда на зажимах катушки и конденсатора будет напряжение, сильно превышающее напряжение на зажимах контура.
Величина Q является добротностью контура и описывает его резонансные характеристики. Q=UC0/U