Добавил:
Если чем-то мне удалось вам помочь, то благодарность принимаю на эту карту: 2200 2460 1776 0607 Для защищенки 5 сем: https://t.me/+h5cc9QNQe19kODVi Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экз / TOE_otvety_na_voprosy_sto_pudov (1).docx
Скачиваний:
20
Добавлен:
10.10.2023
Размер:
12.7 Mб
Скачать

4.Расчёт режима эц методом наложения

Этот метод заключается в том, что воздействие нескольких источников на какой либо элемент цепи можно рассматривать как результат воздействия на элемент каждой ЭДС по отдельности независимо от других источников.

Если  в рассчитываемой цепи присутствует несколько источников ЭДС, то расчет электрической цепи сводится к расчету нескольких цепей с одним источником. Ток в любой ветви рассматривается как алгебраическая сумма частных токов созданных каждой ЭДС по отдельности.

Рассмотрим метод наложения на примере данной схемы рисунок 1.

Дано:

E1=100 B, E2=50 B; R1=4 Om, R2=10 Om; R3=12 Om, r01=1Om, r02=2 Om.

Найти: Все токи.

Порядок расчета:

  1. Определяем количество источников в схеме. В данной схеме два  источника, значит нам нужно рассчитать две схемы.

Предположим, что в цепи действует только Е1 рисунок 2. Укажем на этой схеме направление частных токов создаваемые источником Е1 (токи обозначим с одним штрихом I1; I2: I3). Обратите внимание, если у источника (E1;E2) есть  внутреннее сопротивление (r01; r02), то при исключения данного источника его внутренне сопротивление остаётся в схеме.

    1. Найдем ток I1. Rэкв — сопротивление всей цепи.

    2. Найдем ток I2; I3 по формуле разброса токов.

 

    1. Мы нашли все частные токи в первой схеме (рисунок 2).

6 Рассмотрим вторую схему без E1, но с E2 (рисунок 3). Укажем на этой схеме направление частных токов создаваемые источником Е2 (токи обозначим с двумя штрихами I»1; I»2: I»3)

  1. Найдем ток I»2. RЭКВ рассчитываем заново.

  2. Найдем токи I»1; I»3 по формуле разброса токов.

 

  1. Мы нашли все частные токи для второй схемы (рисунок 3).

  2. Найдем действующие токи в изначальной схеме (рисунок 1) путем алгебраического сложения частных токов первой (рисунок 2) и второй (рисунок 3) схемы. Для этого смотрим как направлены токи в одинаковых ветвях на рисунке 2 и 3. Если токи направлены в одном направлении, то тогда они складываются, а если токи направлены в разные стороны тогда отнимаем.

 

  1. Если конечные токи получаются положительные, то токи направлены так же как на рисунке 2, а если токи получились отрицательными, то тогда они направлены так же как на рисунке 3.

  2. Правильность решения можно проверить при помощи баланса мощности.

https://electrikam.com/metodom-nalozheniya-superpozicii-tokov/

5.Расчёт режима эц методом законов Кирхгофа

РАСЧЕТ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПО ЗАКОНУ КИРХГОФА

Согласно первому закону Кирхгофа алгебраическая сумма токов ветвей, сходящихся в узле, равна нулю:

Согласно второму закону Кирхгофа алгебраическая сумма напряжений на резистивных элементах замкнутого контура равна алгебраической сумме ЭДС, входящих в этот контур.

Расчет многоконтурной линейной электрической цепи, имеющей «b» ветвей с активными и пассивными элементами и «у» узлов, сводится к определению токов отдельных ветвей и напряжений на зажимах элементов, входящих в данную цепь.

Пассивной называется ветвь, не содержащая источника ЭДС. Ветвь, содержащая источник ЭДС, называется активной.

1-й закон Кирхгофа применяют к независимым узлам, т.е. таким, которые отличаются друг от друга хотя бы одной новой ветвью, что позволяет получить (y — I) уравнений.

Недостающие уравнения в количестве b — (у — I) составляют, исходя из второго закона Кирхгофа. Уравнение записывают для независимых контуров, которые отличаются один от другого, по крайней мере, одной ветвью.

Порядок выполнения расчета:

  1. выделяют в электрической цепи ветви, независимые узлы и контуры;

  2. с помощью стрелок указывают произвольно выбранные положительные направления токов в отдельных ветвях, а также указывают произвольно выбранное направление обхода контура;

  3. составляют уравнения по законам Кирхгофа, применяя следующее правило знаков:

    1. токи, направленные к узлу цепи, записывают со знаком «плюс», а токи, направленные от узла,- со знаком «минус» (для первого закона Кирхгофа);

    2. ЭДС и напряжение на резистивном элементе (RI) берутся со знаком»плюс», если направления ЭДС и тока в ветви совпадают с направлением обхода контура, а при встречном направлении — со знаком «минус»;

  4. решая систему уравнений, находят токи в ветвях. При решении могут быть использованы ЭВМ, методы подстановки или определителей.

Отрицательные значения тока какой-либо ветви указывают на то, что выбранные ранее произвольные направления тока оказались ошибочными. Это следует учитывать, например, при построении потенциальной диаграммы, где следует знать истинное направление тока.

На рис. 4, а изображена исходная электрическая схема, для которой следует рассчитать токи в ветвях. Направления токов и обхода контуров приведены на рис. 4, б.

Рис.4

Система уравнений, составленных по первому и второму законам Кирхгофа, имеет вид

6.Метод эквивалентных преобразований. Эквивалентная схема ЭЦ с последовательным и параллельным соединением элементов.

7.Способы представления и параметры гармонических колебаний.

Существуют различные методы описания гармонических колебаний. Приведём некоторые из них.

1. Аналитический метод

Задаётся уравнение колебаний гармонического осциллятора

х=Аsin(ωt+φ0); υx = υm cos ( ω t + φ0 );    ax = –am sin ( ω t + φ0 ).

по которому и определяется смещение его от положения равновесия в любой момент времени.

2. Графический метод

Строятся график гармонического колебания х=Аsin(ωt+φ0). По оси абсцисс (ОХ) откладывается время t или фаза колебаний ωt+φ0, по оси ординат (ОУ) – смещение х от положения равновесия.

3. Метод векторной диаграммы

Этот метод состоит в следующем. Гармоническое колебание может быть задано с помощью вектора, длина которого равна амплитуде А колебания, а направление образует с осью х угол, равный начальной фазе колебания. Если привести этот вектор во вращение с угловой скоростью ω0, то проекция конца вектора на ось х будет перемещаться в пределах от +А до -А, а колеблющаяся величина будет изменяться со временем по закону

x = Asin(ω0t+φ0), совершая гармоническое колебание.