
- •1.Расчёт режима эц методом контурных токов.
- •2.Расчёт режима эц методом узловых потенциалов
- •3.Расчёт режима эц методом эквивалентного генератора
- •4.Расчёт режима эц методом наложения
- •5.Расчёт режима эц методом законов Кирхгофа
- •2.1.2. Параметры гармонических колебаний
- •8.Метод комплексных амплитуд в тэц. Область его применения.
- •9.Описание эц в режиме постоянного тока и гармонического тока.
- •11.Понятие баланса мощности в эц при негармонической периодической эдс
- •12.Понятие комплексного сопротивления эц
- •13.Ачх и фчх в описании эц
- •14.Резонансные явления в эц. Основные виды резонансов в эц
- •Резонанс напряжений
- •15.Схема и основные параметры последовательного колебательного контура
- •16.Схема и основные параметры параллельного колебательного контура
- •17.Анализ эц при негармоническом периодическом воздействии.
- •18.Применение рядов Фурье в анализе работы эц.
- •19.Форма представления ряда Фурье (одна из трёх по выбору)
- •Тригонометрическая форма
- •Вещественная форма
- •Комплексный (экспоненциальный) ряд Фурье
- •20.Спектры гармонического и негармонического колебаний. Графическая иллюстрация.
- •21.Классический метод решения при анализе переходных процессов в эц
- •22.Вынужденные и свободные составляющие переходных процессов
- •23.Виды начальных условий и законы коммутации.
- •24.Диффенцирующие и интегрирующие цепи. Частотные характеристики этих цепeй
- •25.Процедура и этапы расчёта эц операторным методом.
- •26.Методы определения оригинала тока или напряжения по известному изображению.
- •27.Единичная функция (включения) её связь с импульсной функцией. 1-14
- •28.Переходная характеристика и её связь с импульсным откликом 1-15
- •29.Определение параметра скважность импульсной последовательности. Влияние скважности на форму спектра.
- •30.Определение формы спектра производной периодического сигнала по известной форме спектра этого сигнала.
- •31.Интегральное преобразование Фурье. Его отличие от ряда Фурье с позиции тэц.
- •32.Прямое и обратное преобразование Фурье. Их связь с характеристиками эц.
- •33.Условие безыскажённой передачи сигнала по эц.
- •34. Теорема запаздывания в преобразовании Фурье и её применение в тэц.
- •35.Теорема о свёртке и её применение в тэц.
- •36.Физический смысл равенства Парсеваля и его применение
- •37.Дискретизация непрерывного сигнала. Теорема Котельникова.
- •38.Связь спектров непрерывного сигнала до и после дискретизации.
- •39.Условие безыскажённого восстановления непрерывного сигнала из дискретизированного.
- •40.Определение дпф. Область применения дпф. Прямое и обратное дпф
- •41.Основные свойства дпф. Операции циклической свёртки и циклического сдвига.
- •42.Эффект растекания дпф. Средства борьбы с растеканием.
- •43.Алгоритмы бпф их виды и роль в цифровой обработке сигналов.
- •44.Эффективность бпф и теоретические основы алгоритмов
- •45.Классификация основных видов частотно-избирательных фильтров. Частотные характеристики.
- •46.Рабочие параметры частотно-избирательных фильтров. Графическая иллюстрация этих параметров.
- •47.Нереализуемость идеальных фильтров на примере идеального фнч.
- •48.Дифференциальные уравнения и передаточные функции. Нули и полюса передаточной функции.
- •49.Условия физической реализуемости и устойчивости передаточной функции.
- •50.Полиномиальные фильтры. Основные типы: фильтры Баттерворта и Чебышева.
- •51.Процедуры синтеза полиномиальных фильтров. Определение порядка фильтра.
- •52.Нормированные и денормированные частотные характеристики фильтров прототипов. Переход от фнч прототипа к фвч фильтру. Нормирование параметров фильтра и преобразование частоты
- •Понятие фнч-прототипа
- •53.Активные rc фильтры. Преимущества и недостатки arc фильтров на примере схем с операционными усилителями.
- •54.Цепи с сосредоточенными и распределёнными параметрами. Первичные параметры длинных линий, их физический смысл.
- •55.Уравнение передачи однородной длинной линии. Падающие и отражённые волны.
- •56.Вторичные параметры длинных линий. Входное сопротивление длинной линии.
4.Расчёт режима эц методом наложения
Этот метод заключается в том, что воздействие нескольких источников на какой либо элемент цепи можно рассматривать как результат воздействия на элемент каждой ЭДС по отдельности независимо от других источников.
Если в рассчитываемой цепи присутствует несколько источников ЭДС, то расчет электрической цепи сводится к расчету нескольких цепей с одним источником. Ток в любой ветви рассматривается как алгебраическая сумма частных токов созданных каждой ЭДС по отдельности.
Рассмотрим метод наложения на примере данной схемы рисунок 1.
Дано:
E1=100 B, E2=50 B; R1=4 Om, R2=10 Om; R3=12 Om, r01=1Om, r02=2 Om.
Найти: Все токи.
Порядок расчета:
Определяем количество источников в схеме. В данной схеме два источника, значит нам нужно рассчитать две схемы.
Предположим, что в цепи действует только Е1 рисунок 2. Укажем на этой схеме направление частных токов создаваемые источником Е1 (токи обозначим с одним штрихом I1; I2: I3). Обратите внимание, если у источника (E1;E2) есть внутреннее сопротивление (r01; r02), то при исключения данного источника его внутренне сопротивление остаётся в схеме.
Найдем ток I1. Rэкв — сопротивление всей цепи.
Найдем ток I2; I3 по формуле разброса токов.
Мы нашли все частные токи в первой схеме (рисунок 2).
6 Рассмотрим вторую схему без E1, но с E2 (рисунок 3). Укажем на этой схеме направление частных токов создаваемые источником Е2 (токи обозначим с двумя штрихами I»1; I»2: I»3)
Найдем ток I»2. RЭКВ рассчитываем заново.
Найдем токи I»1; I»3 по формуле разброса токов.
Мы нашли все частные токи для второй схемы (рисунок 3).
Найдем действующие токи в изначальной схеме (рисунок 1) путем алгебраического сложения частных токов первой (рисунок 2) и второй (рисунок 3) схемы. Для этого смотрим как направлены токи в одинаковых ветвях на рисунке 2 и 3. Если токи направлены в одном направлении, то тогда они складываются, а если токи направлены в разные стороны тогда отнимаем.
Если конечные токи получаются положительные, то токи направлены так же как на рисунке 2, а если токи получились отрицательными, то тогда они направлены так же как на рисунке 3.
Правильность решения можно проверить при помощи баланса мощности.
https://electrikam.com/metodom-nalozheniya-superpozicii-tokov/
5.Расчёт режима эц методом законов Кирхгофа
РАСЧЕТ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПО ЗАКОНУ КИРХГОФА
Согласно первому закону Кирхгофа алгебраическая сумма токов ветвей, сходящихся в узле, равна нулю:
Согласно второму закону Кирхгофа алгебраическая сумма напряжений на резистивных элементах замкнутого контура равна алгебраической сумме ЭДС, входящих в этот контур.
Расчет многоконтурной линейной электрической цепи, имеющей «b» ветвей с активными и пассивными элементами и «у» узлов, сводится к определению токов отдельных ветвей и напряжений на зажимах элементов, входящих в данную цепь.
Пассивной называется ветвь, не содержащая источника ЭДС. Ветвь, содержащая источник ЭДС, называется активной.
1-й закон Кирхгофа применяют к независимым узлам, т.е. таким, которые отличаются друг от друга хотя бы одной новой ветвью, что позволяет получить (y — I) уравнений.
Недостающие уравнения в количестве b — (у — I) составляют, исходя из второго закона Кирхгофа. Уравнение записывают для независимых контуров, которые отличаются один от другого, по крайней мере, одной ветвью.
Порядок выполнения расчета:
выделяют в электрической цепи ветви, независимые узлы и контуры;
с помощью стрелок указывают произвольно выбранные положительные направления токов в отдельных ветвях, а также указывают произвольно выбранное направление обхода контура;
составляют уравнения по законам Кирхгофа, применяя следующее правило знаков:
токи, направленные к узлу цепи, записывают со знаком «плюс», а токи, направленные от узла,- со знаком «минус» (для первого закона Кирхгофа);
ЭДС и напряжение на резистивном элементе (RI) берутся со знаком»плюс», если направления ЭДС и тока в ветви совпадают с направлением обхода контура, а при встречном направлении — со знаком «минус»;
решая систему уравнений, находят токи в ветвях. При решении могут быть использованы ЭВМ, методы подстановки или определителей.
Отрицательные значения тока какой-либо ветви указывают на то, что выбранные ранее произвольные направления тока оказались ошибочными. Это следует учитывать, например, при построении потенциальной диаграммы, где следует знать истинное направление тока.
На рис. 4, а изображена исходная электрическая схема, для которой следует рассчитать токи в ветвях. Направления токов и обхода контуров приведены на рис. 4, б.
Рис.4
Система уравнений, составленных по первому и второму законам Кирхгофа, имеет вид
6.Метод эквивалентных преобразований. Эквивалентная схема ЭЦ с последовательным и параллельным соединением элементов.
7.Способы представления и параметры гармонических колебаний.
Существуют различные методы описания гармонических колебаний. Приведём некоторые из них.
1. Аналитический метод
Задаётся уравнение колебаний гармонического осциллятора
х=Аsin(ωt+φ0); υx = υm cos ( ω t + φ0 ); ax = –am sin ( ω t + φ0 ).
по которому и определяется смещение его от положения равновесия в любой момент времени.
2. Графический метод
Строятся график гармонического колебания х=Аsin(ωt+φ0). По оси абсцисс (ОХ) откладывается время t или фаза колебаний ωt+φ0, по оси ординат (ОУ) – смещение х от положения равновесия.
3. Метод векторной диаграммы
Этот метод состоит в следующем. Гармоническое колебание может быть задано с помощью вектора, длина которого равна амплитуде А колебания, а направление образует с осью х угол, равный начальной фазе колебания. Если привести этот вектор во вращение с угловой скоростью ω0, то проекция конца вектора на ось х будет перемещаться в пределах от +А до -А, а колеблющаяся величина будет изменяться со временем по закону
x = Asin(ω0t+φ0), совершая гармоническое колебание.