Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ch_7_Integraly_po_figure

.pdf
Скачиваний:
46
Добавлен:
23.02.2015
Размер:
3.03 Mб
Скачать

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

sin 4φ

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos 4φdφ

 

 

0 ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

sin 2φ

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos2φdφ

 

 

 

 

0;

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

2

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

π

 

 

 

 

 

 

 

cos 2φ cos 4φdφ

 

cos 6φ cos 2φ dφ

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

π

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

1

sin 6φ

 

sin 2φ

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0;

 

 

 

 

6

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

J2

1

 

π

 

π

.

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

2 cos φ

25

ρ2 sin2 φ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

π

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V 2 dφ ρdρ

 

 

 

 

 

 

 

 

 

dz

π

6π .

 

 

 

 

 

 

 

 

 

4

 

 

π

 

 

 

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

4

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Найдите объем тела, заданного ограничивающими его поверхностями y 2x2 7 , y 5 ,

z 1 2x2 3y2 , z 4 2x2 3y2 .

 

РЕШЕНИЕ:

 

 

Тело однозначно проектируется на плоскость

 

OXY . Поверхность y 2x2

7 представляет

 

собой параболический цилиндр с направляющей

 

y 2x2 7 и образующей, параллельной оси

№ 12

Oz ; y 5 − плоскость, параллельная плоскости

OXZ . Ниже изображена проекция тела на

 

плоскость OXY .

8

Аппликаты поверхностей

z 1 2x2 3y2 и

z 4 2x2 3y2 отличаются

на постоянную

величину (вторая получается

из первой сдвигом

49

в положительном направлении оси Oz на 3 единицы).

Объем V равен

4 2x2 3 y2

V dxdydz

dxdy

 

 

 

 

 

 

dz

 

 

V

 

 

 

 

D

 

1 2 x2 3 y2

 

 

 

1

 

2 x2 7

4 2 x2 3 y2

 

 

 

 

1

2 x2 7

 

2 dx

dy

 

 

dz 2 3 dx

 

dy

0

 

5

 

1 2 x2 3 y2

 

 

 

 

0

 

5

 

1

 

 

 

 

 

 

 

 

x

3

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 dx 2 2x2

12 x

 

 

 

 

 

8.

 

 

 

 

 

 

0

 

 

 

 

 

 

 

3

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Найдите объем тела, заданного

 

 

ограничивающими его поверхностями

 

 

 

 

 

 

 

 

x2 y2

 

 

 

z 36 x

2

y

2

, z

 

.

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

РЕШЕНИЕ:

Поверхность z 36 x2 y2 представляет собой верхнюю ( z 0 ) часть сферы

x2 y2 z2 36 с центром в начале координат и

радиусом 6.

 

 

 

 

 

 

 

1

 

 

 

 

 

− верхняя ( z 0 )

Поверхность z

 

 

 

x2 y2

 

 

 

 

 

 

3

 

 

 

 

 

часть конуса z2

1

 

x2 y2 .

 

 

 

3

 

 

 

 

 

 

№ 13

72π

x ρcosφ,

В полярной системе координат

y ρsinφ, (ρ 0) , уравнения поверхностей имеют вид:

z 36 ρ2 и z 1 ρ . Найдем их линию

3

пересечения: 36 ρ2

1

ρ2 , ρ 3

 

.

3

 

3

 

 

 

50

Объем V равен:

 

 

 

36

ρ2

 

 

 

 

 

 

 

 

 

 

 

3 3

3 3

 

 

 

 

1

 

 

 

 

 

 

2

 

V dφ ρdρ

dz dφ

ρ

36 ρ

 

 

 

 

 

ρ dρ .

 

 

 

 

 

 

 

0

0

 

1

 

ρ

0

0

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

Вычислим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36 ρ

2

 

 

t,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt dρ,

 

3

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ 36 ρ2 dρ ρdρ

 

 

 

,

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ 0,t 36,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ 3

 

3,t 9

 

 

9

dt

 

 

 

 

 

 

 

1 t3 2

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

63,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2 3 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

1

 

3

 

 

 

 

 

 

 

1

 

 

ρ

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ2dρ

 

 

 

 

 

 

 

 

 

 

 

27 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

0

 

 

 

 

 

3 3

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

36 ρ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тогда V dφ ρdρ

 

 

 

 

 

dz 36 dφ 72π .

 

 

0

 

 

 

 

0

 

 

 

 

 

 

1

 

ρ

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Найти объем тела, заданного ограничивающими его поверхностями z 10(x2 y2 ) 1,

 

z 1 20y .

 

 

 

РЕШЕНИЕ:

 

 

 

Поверхность z 10(x2

y2 ) 1 представляет

 

 

собой параболоид вращения, ось симметрии

 

 

которого совпадает с осью Oz , поднятый на

 

 

единицу вверх относительно плоскости OXY ,

 

 

поверхность z 1 20y − плоскость,

 

№ 14

параллельная оси Ox , проходящая через точку

5π

(0; 0; 1). Ниже приведено сечение тела

 

 

 

плоскостью OYZ :

 

 

51

Найдем линию пересечения поверхностей z 10(x2 y2 ) 1 и z 1 20y :

10(x2 y2 ) 1 1 20y , x2 y2 2y 0 , x2 y 1 2 1.

Линия пересечения поверхностей – эллипс, лежащий на пересечении кругового цилиндра x2 y 1 2 1 и плоскости z 1 20y ; на плоскость OXY тело проектируется в круг

x2 y 1 2 1. Проекция тела на плоскость

OXY – область D :

Объем V равен:

 

1 20 y

 

V dxdy

 

dz

D10 x2 y2 1

1 20y 1 10x2 10y2 dxdy

D

10 x2 y2 2y dxdy .

D

Перейдем в полярную систему координат и найдем уравнение границы в полярных координатах:

x ρcosφ,

ρ2 2ρsin φ ,

x2 y2 2y 0 ,

 

y ρsin φ,

 

 

ρ 2sinφ или ρ 0 , т.е. 0 ρ 2sin φ.

Значения угла φ в области D : φ 0, поскольку область D симметрична относительно оси Ox , а подынтегральная функция четна по x , можно перейти к интегралу по половине области D , а результат удвоить:

52

 

 

 

 

 

 

 

 

0

 

 

 

2sinφ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V 20

 

 

 

 

 

ρ 2ρ sin φ+ρ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

3

 

 

 

 

 

ρ

4

 

 

 

 

2 sinφ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 2

 

 

 

sin φ+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

4

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

16

 

 

 

4

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

80

0

 

 

 

4

 

20

 

 

 

 

 

sin

 

 

φ+4 sin

 

d

 

 

 

sin

 

d

 

 

3

 

 

 

3

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 cos 2 2

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π 1 2cos 2φ cos2 2 d

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

sin 2

 

 

sin 4

 

0

 

 

 

 

20

 

3

 

π

 

5π.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2 4

 

 

 

 

π

 

 

 

3

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Найдите объем тела, заданного неравенствами

16 x2 y2 z2 100 , 0 z

x2 y2

,

y 0 ,

24

 

x

 

 

 

 

y

 

.

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

РЕШЕНИЕ:

Тело представляет собой шаровой слой от плоскости OXY до верхней части конуса. Перейдем в сферическую систему координат

 

ρ,θ,φ .

 

 

 

 

 

 

№ 15

x ρsinθcosφ,

 

 

 

 

 

52π

 

 

 

 

 

 

 

 

 

y ρsinθsinφ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z ρcosθ.

 

 

 

 

 

 

 

Тогда x2 y2 z2

ρ2

 

 

x2

y2

 

;

 

 

 

tgθ ;

 

 

 

 

z

4 ρ 10,

24 tgθ

 

11π.

π φ

6

53

Объем V вычисляется так:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

π

 

π

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V ρ2 sinθdρdθdφ dφ

 

 

 

dθ ρ2 sinθdρ

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π arctg

24

 

 

4

 

 

 

 

 

 

 

 

 

 

11π

 

 

 

π

 

 

 

 

 

 

3

 

10

 

 

 

11π

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

2

 

 

 

 

 

 

 

ρ

 

 

 

6

 

 

 

2

 

 

 

 

 

 

 

 

1000 64

 

 

 

 

dφ

 

 

 

 

 

dθsinθ

 

 

 

 

 

dφ

 

 

 

 

 

 

 

dθsinθ

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

π arctg

 

 

 

 

 

 

4

 

 

 

 

π

arctg

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

24

 

 

 

 

 

 

 

24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

312

 

 

dφ( cosθ)

 

2

 

 

 

 

 

312

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

arctg

24

 

 

 

6

 

 

2

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 tg θ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

 

 

 

 

312

 

1

 

52π.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тело V задано ограничивающими его

 

 

 

 

 

 

 

поверхностями, μ - плотность. Найти массу

 

 

тела.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 x2 y2 z2 , x2 y2 1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y 0, z 0 (y 0, z 0) ; μ 10 x2 y2 .

 

 

 

 

РЕШЕНИЕ:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Линии пересечения поверхностей 4 x2 y2 z2

 

и x2 y2

1

лежат в плоскостях z 2 .

 

 

 

 

 

 

 

Тело расположено внутри цилиндра x2 y2

1

№ 16

(ρ 1) между плоскостью z 0 и конической

 

поверхностью 4(x2 y2 ) z2

 

 

(2ρ z ), причем

 

 

 

y 0 . Ниже приведены сечение тела плоскостью

 

OYZ и проекция на плоскость OXY

 

 

 

 

 

 

μ 10 x2 y2 10ρ2 .

54

 

 

Объем V :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

1

 

 

 

 

 

π

1

 

 

 

 

 

 

2

 

 

 

 

 

 

2

 

0

 

 

 

 

V 2 dφ ρdρ 10ρ2

dz 20 dφ ρ3dρ z

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

0

 

 

 

 

 

 

0

0

 

 

 

 

 

 

 

π

 

 

 

π

 

 

 

 

 

1

 

 

π

 

 

 

 

 

2

 

 

1

2

 

ρ

5

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40 dφ ρ4 dρ 40 dφ

 

 

 

 

8 dφ 4π.

 

 

 

 

5

 

 

 

 

 

 

0

 

 

0

0

 

 

0

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Криволинейные интегралы первого рода и их приложения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

№ п/п

Задание

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ

Вычислите (x2 y2 ) dl , где

L

L − контур треугольника ОАВ с вершинами в точках

О 0,0 , А 1,0 , В 0,1 .

РЕШЕНИЕ:

(x2 y2 ) dl = (x2 y2 ) dl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

OA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x2 y2 ) dl (x2 y2 ) dl .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) (x2 y2 ) dl OA : y 0,0 x 1,dl dx =

 

 

 

 

 

OA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

 

 

 

x3

 

 

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

dx

 

 

 

 

0

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

3

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

2 1

№ 17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AB : y 1 x, 0 x 1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) (x2 y2 ) dl

dy 2

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

AB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dl 1

 

 

 

dx

 

2dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x3

1 x 4

 

1

7

 

 

 

 

 

 

 

2

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

1 x

 

 

 

2 dx 2

 

 

 

 

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

0

 

12

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) (x2 y2 ) dl BO :x 0,0 y 1,dl dy =

 

 

 

 

 

BO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

3

 

 

 

 

y4

 

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

dy

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

4

 

 

 

0

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x2 y2 ) dl

(x2 y2 ) dl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

1

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

7

 

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

12

 

 

 

4

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

55

 

Вычислите ydl , где L − участок параболы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

y2 2 px от начала координат до точки x , y

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

РЕШЕНИЕ:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ydl

y

 

 

 

 

 

 

 

 

 

2

dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 (yx )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Продифференцируем неявное уравнение кривой

 

 

 

 

 

 

L : y2

2 px , получим

2 yy 2 p yy p .

 

 

1

 

3

 

 

 

 

 

 

 

 

№ 18

Подынтегральное выражение:

 

 

 

 

 

 

 

 

 

y02 p2

2 p3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

y

2

y

2

 

 

 

2

 

 

2 px

p

2

.

 

 

 

 

 

 

 

 

 

 

 

y 1 (yx )

 

 

 

 

 

 

(yx )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx t 2 px p2 , dt 2 pdx

 

 

 

 

 

 

ydl

 

2 px p2

 

 

 

 

 

 

 

 

L

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

2 px p2

 

 

 

 

 

 

 

 

 

1

 

 

2

 

3

 

 

2 px

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t dt

 

 

 

 

 

t 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 p

 

 

 

 

 

 

 

2 p 3

 

 

 

p

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 px0

 

p2 2

 

p3

 

 

y02 p2 2 p3

.

 

 

 

 

 

 

3p

 

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вычислите ydl , где L

L

дуга параболы y2 2 px ,

 

отсекаемая параболой

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

2 py .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

РЕШЕНИЕ:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Точка пересечения парабол

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

2 px, y

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

2 py

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x4

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

x1 0,

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

№ 19

 

 

 

 

 

2 px, x

 

 

8 p

 

 

 

 

x 2 p.

 

 

 

 

 

 

5 5 1

 

4 p2

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ydl y

 

 

 

 

 

 

 

2

dy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

1

 

 

2 dy

 

 

 

 

 

 

 

 

 

1 (yx )

 

 

 

p

 

 

 

 

 

 

 

 

L

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2 p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

0

y p

 

 

y

 

 

dy

 

 

 

 

 

 

 

p

 

y

 

 

 

 

0

 

 

 

 

 

 

 

p

 

 

 

 

2p

3

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2

3

 

 

 

 

 

 

 

 

 

 

 

 

2

 

3

 

 

 

 

 

 

3

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

4p

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

p

5 5 p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3p

 

 

 

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

5

 

1 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56

Вычислите y2 dl , где L − первая арка

L

x a t sint ,

циклоиды L :

y a 1 cos t .

РЕШЕНИЕ:

 

Первой арке соответствует изменение параметра

 

 

№ 20

0 t 2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

256

a

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2dl a2 1 cost 2

 

 

a2 1 cost 2 a2 sin2 t dt

 

15

 

 

L

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a3 1 cost 2

 

1 2cost cos2 t sin2 t dt

 

 

 

 

 

 

 

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a3 1 cost 2

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 2cost

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

4 t

 

 

 

t

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

2 t

2

 

 

 

t

 

 

 

 

 

 

8a

 

sin

 

 

 

sin

 

 

 

dt 16a

 

 

 

1 cos

 

 

 

 

 

d cos

 

 

 

 

 

 

 

2

2

 

 

 

2

2

 

 

 

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

2 t

 

 

 

 

 

4 t

2

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

16a

 

1 2cos

 

 

 

cos

 

 

 

 

 

 

d cos

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

2

 

 

 

 

 

 

t

 

 

 

1

 

 

 

5 t

 

2

 

 

256

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

16a

cos

 

 

 

 

 

 

 

2cos

 

 

 

 

 

 

cos

 

 

 

0

 

 

 

 

 

 

a

.

 

 

 

 

 

 

2

3

 

 

2

5

 

2

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Найдите массу первого витка винтовой линии, если ее линейная плотность обратно пропорциональна квадрату модуля радиусвектора ее точки.

РЕШЕНИЕ:

№ 21

a2 b2

arctg 2 b

 

ab

a

r

 

 

 

r

 

 

 

 

 

 

 

r

x2

y2

2

 

xi yj zk ,

 

z .

57

1

ρ(x, y, z) x2 y2 z 2 .

Уравнение винтовой линии в параметрическом виде имеет вид

x a cos t,

L : y a sin t,z bt,

первому витку соответствует изменение параметра 0 t 2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a2 sin2 t a2 cos2 t b2

m ρ(x, y)dl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

a

2

cos

2

t

a

2

sin

2

t

2

t

2

 

 

 

L

 

 

 

 

 

 

 

 

 

o

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

a2 b2

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

b

2

t

2

 

 

 

 

b

2

 

 

 

 

 

a

2

 

 

 

 

 

 

 

 

 

 

 

 

 

o a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o

 

 

 

t

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b2

 

 

 

 

 

 

 

 

 

 

a2

b2

 

 

 

b

 

 

 

 

bt

 

2

 

 

 

 

 

 

a

2 b2

 

 

 

 

 

 

 

 

2 b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

arctg

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

arctg

 

 

.

 

b2

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

ab

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

Найдите

 

 

массу

 

 

 

кардиоиды

 

 

 

a 1 cos ,

если ее линейная плотность постоянна и равна 5. РЕШЕНИЕ:

№ 22

asin ,

40a

 

dl

 

 

 

a2 sin2 a2 1 cos 2

d

asin2 1 2cos cos2 d

a 2 2cos d 2a cos d ,

 

 

 

 

2

 

 

 

 

 

 

π

 

 

m ρ(x, y)dl 5 2 2a cos

d

2

L

 

 

0

 

20a 2sin

 

 

 

40a.

 

 

 

 

 

 

 

 

 

 

 

0

 

 

2

 

 

 

58

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]