Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалы по КП СЭУ для студентов / МУ по КП СЭУ Иванченко и Хандова 2009 ред ВАШ.doc
Скачиваний:
196
Добавлен:
15.02.2015
Размер:
3.72 Mб
Скачать

2.5. Выбор редуктора

При выборе типа главной передачи [5] для транспортных речных судов с реверсивными главными двигателями, частота вращения коленчатого вала которых не превышает 300÷350 мин-1 предпочтение отдается прямой передаче. При частоте вращения коленчатого вала больше указанных значений используется редукторная передача. В случае нереверсивных главных двигателей применяется главная передача с реверсивной муфтой или реверс-редуктором. Для ледоколов, паромов и крупных пассажирских судов предпочтение отдается электрической передаче. Гидропередача обычно в составе с зубчатой применяется на буксирах и толкачах.

При выборе типа редуктора опредеяющими параметрами являются максимально-допустимые крутящий момент и частота вращения входного вала редуктора, выше которых редуктор работать не должен. При выборе типа редуктора необходимо стремиться к тому, чтобы частота вращения выходного вала редуктора была возможно близкой к частоте вращения валопровода судна-прототипа. Крутящий момент на выходном фланце двигателя в Н·м определяется по формуле:

где Ре подставляется в Вт, а n – в об/мин. Если редуктор встроен в корпус двигателя и поставляется заводом изготовителем (дизель-редукторный агрегат – ДРА), то необходимости в выборе редуктора нет.

Из монографии [5] или из приложения 8 выбирается тип редуктора, выписываются: марка, передаточное отношение, габариты, масса. Определяется частота вращения выходного вала редуктора, с которой будет вращаться вся линия валопровода, включая винт.

nв= n·i – частота вращения на выходном фланце редуктора, об/мин;

n – частота вращения главного двигателя, об/мин;

i – передаточное отношение редуктора (отношение частоты вращения ведомого вала к частоте вращения вала ведущего).

2.6. Определение параметров согласованного гребного винта [12]

При изменении скорости движения судна (увеличение или уменьшение мощности главного двигателя) необходимо новую мощность согласовать с работой гребного винта, т.е. определить основные его элементы. Согласование работы двигателя и гребного винта рекомендуется производить на номинальной частоте вращения при мощности, составляющей 85% от номинального значения, т.е. расчет производить при меньшем сопротивлении корпуса судна.

Приближенно элементы гребного винта определяются по уравнению:

где ΔН – изменение шага винта, м;

ΔDв и Dв –изменение диаметра винта, диаметр винта, м;

Δn и n – частота вращения гребного винта, об/сек; изменение частоты вращения гребного винта;

Δn=n0–n1 , где n0 – частота вращения гребного винта до модернизации в об/с,

n1 – частота вращения гребного винта после модернизации в об/с;

С1; С2; С3; С4 – коэффициенты;

С11(Н/Dв; λе)

С2= –5К2·φ1(Н/Dв; λе)+ Н/Dв

С3=3К2·φ1(Н/Dв; λе)+λе·φ2(Н/Dв; λе)

С4=ΔVе·φ2(Н/Dв; λе)/(n·Dв)

ΔVе - изменение скорости судна

ΔVе=Vт -V, км/ч

Vт – скорость судна после модернизации, км/ч;

V – скорость судна до модернизации, км/ч. Если изменение скорости судна заложено в исходных данных курсового проекта, то значение Vт берется из задания. Если в исходных данных курсового проекта говорится о модернизации энергетической установки с целью повышения энергетической эффективности, то Vт определяется по формуле адмиралтейского коэффициента Са :

Са=Q2/3·Vт3/ Ру,

где Q – водоизмещение судна в м3, Ру – мощность главных двигателей в кВт;

ΔКр – изменение коэффициента момента ;

ΔРгв – изменение мощности на гребном валу, кВт;

ΔРгв = Pгв 1 – Ргв 0

Ргв0 – мощность передаваемая гребному винту до модернизации, кВт;

Ргв1 – мощность передаваемая гребному винту после модернизации, кВт;

Ргв0 = Рен 0 ·ηв·ηп ; Ргв 1 = Рен 1·ηв·ηп

Рен0 и Рен1 – эффективная номинальная мощность двигателя до модернизации и после модернизации, кВт;

ηв и ηп – КПД валопровода и передачи; ηв =0,98÷0,99 (упорный опорный подшипники); ηп =0,96÷0,97 (реверс-редукторная передача); ηп = 0,87÷0,9 (электропередача на двойном токе); ηп = 0,85÷0,92 (гидродинамическая передача);

ρ – плотность воды, т/м3 .

При условии, что согласование производится за счет изменения шага винта (ΔDв /Dв равны нулю) уравнение упрощается:

где зависимости φ1 и φ2 определяются с помощью графиков на рис. 1,2 для открытых винтов и на рис. 3,4 для винтов в насадке;

λе относительная поступь гребного винта

λе=V·(1–ψ)/(n0·Dв)

где V – скорость судна до модернизации в м/с,

ψ – коэффициент попутного потока

где δ – коэффициент полноты водоизмещения;

δ=Vов/(L·B·T)

L – длина корпуса судна расчетная, м; B – ширина корпуса судна расчетная, м; T – осадка расчетная, м; х – количество гребных винтов; Vов – объемное водоизмещение судна, м3.

Для судов, относительная скорость которых , к значению ψ рекомендуется вводить поправку на влияние волнообразования

Δψ=

где g – ускорение силы тяжести, g=9,87 м/с2.

Для гребных винтов в насадке

где Kψ – коэффициент учитывающий увеличение попутного потока в диске винта за счет свеса кормовой оконечности судна, выбираемый по графику на рис. 5.

Для судов с обычными (нетуннельными) обводами кормовой оконечности а=0,043 , Kψ=1, “х” равняется числу винтов.

Для судов с туннельными формами кормы а= –0,05; х=1 (независимо от количества винтов).

Для винтов, установленных в туннелях, при определении ψ вместо диаметра винта Dв следует подставлять осадку судна кормой Тк.

Рис.1. График для открытого гребного винта.

Рис. 2. График для открытого гребного винта.

Рис. 3. График для гребного винта в насадке.

Рис. 4. График для гребного винта в насадке

Рис. 5. График Кф(Д/Тк); h=(h1-h2)/Dв