
- •Министерство сельского хозяйства рф
- •Тема 1. Аналитическая геометрия 9
- •Общие методические указания
- •Тема 1. Аналитическая геометрия Элементы аналитической геометрии на плоскости
- •Уравнение прямой на плоскости
- •Уравнение прямой, проходящей через две точки
- •Уравнение прямой по точке и направляющему вектору
- •Уравнение прямой в отрезках
- •Угол между прямыми на плоскости
- •Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой
- •Расстояние от точки до прямой
- •Вопросы для самопроверки
- •Тема 2 линейная алгебра
- •Матрицы
- •Основные действия над матрицами.
- •Определители
- •Свойства определителей
- •Метод Крамера решения систем линейных алгебраических уравнений
- •Вопросы для самопроверки
- •Тема 3. Функции и пределы Функция одной независимой переменной
- •Постоянные и переменные величины
- •Понятие функции. Область её определения. Способы задания
- •Сложнаяфункция
- •Обратная функция
- •Основные элементарные функции
- •Вопросы для самопроверки
- •Предел и непрерывность функции одной переменной
- •Числовая последовательность
- •Предел числовой последовательности
- •Предельный переход в неравенствах
- •Признак существования предела последовательности
- •Предел функции в точке
- •Односторонние пределы
- •Предел функции при X →
- •Бесконечна большая функция (б.Б.Ф.)
- •Бесконечно малые функции (б.М.Ф.)
- •Основные теоремы о пределах
- •Признаки существования пределов
- •Замечательные пределы Первый замечательный предел
- •Второй замечательный предел
- •Сравнение бесконечно малых функций
- •Эквивалентные бесконечно малые и основные теоремы о них
- •Применение эквивалентных бесконечно малых функций к вычислению пределов
- •Непрерывность функции
- •Непрерывность функции в точке, на отрезке
- •Точки разрыва функции и их классификация
- •Свойства непрерывных функций Свойства функций, непрерывных в точке:
- •Свойства функций, непрерывных на отрезке:
- •Вопросы для самопроверки
- •Тема 4. Дифференциальное исчисление функции одной независимой переменной
- •Определение производной; ее механический и геометрический смысл
- •Связь между непрерывностью и дифференцируемостью функции
- •Правила дифференцирования функции
- •Производные основных элементарных функций
- •Производная сложной функции
- •Производная обратной функции
- •Производная неявно заданной функции
- •Правила дифференцирования
- •Производные высших порядков Производные высших порядков явно заданной функции
- •Механический смысл производной второго порядка
- •Производные высших порядков неявно заданной функции
- •Вопросы для самопроверки
- •Дифференциал функции
- •Понятие дифференциала функции, его геометрический смысл
- •Основные теоремы о дифференциалах. Таблица дифференциалов.
- •Применение производной к исследованию функций Возрастание и убывание функций
- •Экстремум функции
- •Выпуклость функции. Точки перегиба
- •Асимптоты
- •Общая схема исследования функций и построения их графиков
- •Наибольшее и наименьшее значение функции
- •Вопросы для самопроверки
- •Тема 5. Интегральное исчисление Неопределенный интеграл
- •Понятие неопределенного интеграла
- •Свойства неопределенного интеграла
- •Основные методы интегрирования Метод непосредственного интегрирования
- •Пример. . Метод интегрирования подстановкой (заменой переменной)
- •Метод интегрирования по частям
- •Интегрирование рациональных дробей
- •Определенный интеграл
- •Свойства определенного интеграла.
- •Вычисление определенного интеграла
- •Замена переменных в определенном интеграле
- •Интегрирование по частям в определенном интеграле
- •Геометрические приложения определенного интеграла Вычисление площадей плоских фигур
- •Вычисление длины дуги кривой
- •Тема 6. Дифференциальные уравнения
- •Дифференциальные уравнения первого порядка с разделяющимися переменными
- •Однородные дифференциальные уравнения первого порядка
- •Линейные дифференциальные уравнения первого порядка
- •Решение линейных уравнений первого порядка с помощью подстановки
- •Линейные дифференциальные уравнения с постоянными коэффициентами
- •Вопросы для самопроверки
- •Тема 7. Ряды
- •Числовые ряды
- •Знакопеременные ряды
- •Вопросы для самопроверки
- •Функциональные и степенные ряды
- •Равномерная сходимость функционального ряда
- •Вопросы для самопроверки
- •Тема 8.Векторный анализ
- •Вопросы для самопроверки
- •Тема 9. Численные методы
- •Вопросы для самопроверки
- •Тема 10. Функции комплексного переменного
- •Вопросы для самопроверки
- •Тема 11. Элементы функционального анализа
- •Тема 12. Теория вероятностей
- •События и их классификация
- •Формула полной вероятности. Формула Бейеса.
- •Повторные испытания. Формула Бернулли
- •Локальная и интегральная теоремы Лапласа
- •Интегральная теорема Лапласа
- •Формула Пуассона
- •Тема 13. Случайная величина и ее числовые характеристики
- •Вопросы для самопроверки
- •Тема 14. Статистическое оценивание и проверка гипотез
- •Вопросы для самопроверки
- •Тема 15. Статистические методы обработки экспериментальных данных Основные понятия и методы математической статистики
- •Математическая статистика
- •Статистическое распределение выборки
- •Геометрическое изображение статистического распределения
- •Выборочные характеристики статистического распределения
- •Выборочная средняя
- •Выборочная и исправленная дисперсия
- •Доверительный интервал
- •Вопросы для самопроверки
- •Литература
Равномерная сходимость функционального ряда
Для
каждого значения x0
из области сходимости ряда
,
т.е. остаток
сходящегося ряда стремится к нулю при
.
Определение.
Функциональный ряд
называется равномерно сходящимся в
некотором интервале, если он сходится
для всех x из этого интервала и если для
всякого числа>0
существует такое число N>0, зависящее
от
и не зависящее от x. (при n > N выполняется
неравенство
для всех x из рассматриваемого интервала).
Для установления равномерной сходимости функционального ряда на отрезке служат и достаточные признаки равномерной сходимости. Один из них признак Вейерштрасса.
Теорема (признак Вейерштрасса)
Если существует сходящийся числовой
ряд с положительными членами
и при этом выполняются соотношения:
для всех
,
в котором определены члены функционального
ряда
,
то этот ряд сходится равномерно
(и абсолютно) в интервале
.
В
этом случае ряд
,члены которого превосходят абсолютные
величины соответствующих членов ряда
,
называется мажорантным рядом для
.
Примечание.Если сходится ряд
,
то можно найти такое положительное
целое число
(номер), не зависящее от
,
что при
модуль
будет меньше любого наперед заданного
положительного числа
.
Вопросы для самопроверки
Дайте определение сходимости функционального ряда. Приведите примеры рядов с различными областями сходимости.
Дайте определение понятия равномерной сходимости последовательной функции. Какой ряд называется равномерно сходящимся?
Сформулируйте признак абсолютной и равномерной сходимости ряда.
Сформулируйте основные свойства равномерно сходящихся рядов.
Докажите теорему Абеля о сходимости степенных рядов.
Выведите формулу для вычисления радиуса круга сходимости степенного ряда.
Тема 8.Векторный анализ
Литература [1], [8], [19], [20], [22], [23].
Вопросы для самопроверки
Скалярное поле. Поверхности и линии уровня скалярного поля. Производная по направлению. Градиент скалярного поля, его координатное и инвариантное определения.
Векторное поле. Векторные линии и их дифференциальные уравнения.
Односторонние и двусторонние поверхности. Поток векторного поля через поверхность. Физический смысл потока в поле скоростей жидкости. Вычисление потока. Теорема Остроградского.
Дивергенция векторного поля, ее инвариантное определение и физический смысл. Вычисление дивергенции. Соленоидальные (трубчатые) поля.
Линейный интеграл в векторном поле. Работа силового поля. Циркуляция векторного поля. Теорема Стокса. Ротор поля, его координатное и инвариантное определение. Физический смысл ротора в поле скоростей. Условия независимости линейного интеграла от формы пути интегрирования.
Потенциальное поле. Условие потенциальности поля. Вычисление линейного интеграла в потенциальном поле.
Оператор Гамильтона. Операции второго порядка в векторном анализе. Оператор Лапласа, его выражение в цилиндрических и сферических координатах.
Тема 9. Численные методы
Литература: [5],[6],[7],[8],[22].
Вопросы для самопроверки
Алгоритм и их основа. Блок-схема алгоритмов. Основные типы вычислительных процессов.
Приближение функции многочленом по методу наименьших квадратов.
Интерполяция. Интерполяционный многочлен Лагранжа. Линейная и квадратичная интерполяция. Конечные разности и их свойства.
Решение линейных систем методом Гаусса-Жордана. Обращение матриц и вычисление определителей по методу Гаусса-Жордана.
Итерационные методы решения уравнений. Понятия об итерационных методах решения систем уравнений.
Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений первого порядка. Метод Эйлера и его модификация. Метод Рунге-Кутта.
Понятие о методе сеток решения краевых задач математической физики.