
- •Министерство сельского хозяйства рф
- •Тема 1. Аналитическая геометрия 9
- •Общие методические указания
- •Тема 1. Аналитическая геометрия Элементы аналитической геометрии на плоскости
- •Уравнение прямой на плоскости
- •Уравнение прямой, проходящей через две точки
- •Уравнение прямой по точке и направляющему вектору
- •Уравнение прямой в отрезках
- •Угол между прямыми на плоскости
- •Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой
- •Расстояние от точки до прямой
- •Вопросы для самопроверки
- •Тема 2 линейная алгебра
- •Матрицы
- •Основные действия над матрицами.
- •Определители
- •Свойства определителей
- •Метод Крамера решения систем линейных алгебраических уравнений
- •Вопросы для самопроверки
- •Тема 3. Функции и пределы Функция одной независимой переменной
- •Постоянные и переменные величины
- •Понятие функции. Область её определения. Способы задания
- •Сложнаяфункция
- •Обратная функция
- •Основные элементарные функции
- •Вопросы для самопроверки
- •Предел и непрерывность функции одной переменной
- •Числовая последовательность
- •Предел числовой последовательности
- •Предельный переход в неравенствах
- •Признак существования предела последовательности
- •Предел функции в точке
- •Односторонние пределы
- •Предел функции при X →
- •Бесконечна большая функция (б.Б.Ф.)
- •Бесконечно малые функции (б.М.Ф.)
- •Основные теоремы о пределах
- •Признаки существования пределов
- •Замечательные пределы Первый замечательный предел
- •Второй замечательный предел
- •Сравнение бесконечно малых функций
- •Эквивалентные бесконечно малые и основные теоремы о них
- •Применение эквивалентных бесконечно малых функций к вычислению пределов
- •Непрерывность функции
- •Непрерывность функции в точке, на отрезке
- •Точки разрыва функции и их классификация
- •Свойства непрерывных функций Свойства функций, непрерывных в точке:
- •Свойства функций, непрерывных на отрезке:
- •Вопросы для самопроверки
- •Тема 4. Дифференциальное исчисление функции одной независимой переменной
- •Определение производной; ее механический и геометрический смысл
- •Связь между непрерывностью и дифференцируемостью функции
- •Правила дифференцирования функции
- •Производные основных элементарных функций
- •Производная сложной функции
- •Производная обратной функции
- •Производная неявно заданной функции
- •Правила дифференцирования
- •Производные высших порядков Производные высших порядков явно заданной функции
- •Механический смысл производной второго порядка
- •Производные высших порядков неявно заданной функции
- •Вопросы для самопроверки
- •Дифференциал функции
- •Понятие дифференциала функции, его геометрический смысл
- •Основные теоремы о дифференциалах. Таблица дифференциалов.
- •Применение производной к исследованию функций Возрастание и убывание функций
- •Экстремум функции
- •Выпуклость функции. Точки перегиба
- •Асимптоты
- •Общая схема исследования функций и построения их графиков
- •Наибольшее и наименьшее значение функции
- •Вопросы для самопроверки
- •Тема 5. Интегральное исчисление Неопределенный интеграл
- •Понятие неопределенного интеграла
- •Свойства неопределенного интеграла
- •Основные методы интегрирования Метод непосредственного интегрирования
- •Пример. . Метод интегрирования подстановкой (заменой переменной)
- •Метод интегрирования по частям
- •Интегрирование рациональных дробей
- •Определенный интеграл
- •Свойства определенного интеграла.
- •Вычисление определенного интеграла
- •Замена переменных в определенном интеграле
- •Интегрирование по частям в определенном интеграле
- •Геометрические приложения определенного интеграла Вычисление площадей плоских фигур
- •Вычисление длины дуги кривой
- •Тема 6. Дифференциальные уравнения
- •Дифференциальные уравнения первого порядка с разделяющимися переменными
- •Однородные дифференциальные уравнения первого порядка
- •Линейные дифференциальные уравнения первого порядка
- •Решение линейных уравнений первого порядка с помощью подстановки
- •Линейные дифференциальные уравнения с постоянными коэффициентами
- •Вопросы для самопроверки
- •Тема 7. Ряды
- •Числовые ряды
- •Знакопеременные ряды
- •Вопросы для самопроверки
- •Функциональные и степенные ряды
- •Равномерная сходимость функционального ряда
- •Вопросы для самопроверки
- •Тема 8.Векторный анализ
- •Вопросы для самопроверки
- •Тема 9. Численные методы
- •Вопросы для самопроверки
- •Тема 10. Функции комплексного переменного
- •Вопросы для самопроверки
- •Тема 11. Элементы функционального анализа
- •Тема 12. Теория вероятностей
- •События и их классификация
- •Формула полной вероятности. Формула Бейеса.
- •Повторные испытания. Формула Бернулли
- •Локальная и интегральная теоремы Лапласа
- •Интегральная теорема Лапласа
- •Формула Пуассона
- •Тема 13. Случайная величина и ее числовые характеристики
- •Вопросы для самопроверки
- •Тема 14. Статистическое оценивание и проверка гипотез
- •Вопросы для самопроверки
- •Тема 15. Статистические методы обработки экспериментальных данных Основные понятия и методы математической статистики
- •Математическая статистика
- •Статистическое распределение выборки
- •Геометрическое изображение статистического распределения
- •Выборочные характеристики статистического распределения
- •Выборочная средняя
- •Выборочная и исправленная дисперсия
- •Доверительный интервал
- •Вопросы для самопроверки
- •Литература
Экстремум функции
Значение функции
в точке хоназывается максимумом
(минимумом), если оно является наибольшим
(наименьшим) по сравнению с ее значениями
во всех достаточно близких точках слева
и справа от хо.
Функция может иметь экстремум (максимум или минимум) только в тех точках, которые лежат внутри области определения функции и где ее производная равна нулю или не существует. Такие точки называются критическими.
В соответствующих точках графика функции
касательная параллельна оси абсцисс
,
или оси ординат
или нет определенной касательной
(например, как в угловой точке).
Точками экстремума являются все точки, где функция меняет свое поведение и непрерывна.
Точки, при переходе через которые аргумента х возрастание функции сменяется на убывание, являются точками максимума, а точки, при переходе через которые аргумента х убывание функции сменяется на возрастание, являются точками минимума.
Поскольку поведение функции характеризуется знаком ее производной, то функция будет иметь экстремум в тех точках, где ее производная меняет свой знак, а сама функция непрерывна.
Отсюда вытекает следующее правило исследования функции на экстремум.
Чтобы найти точки экстремума функции
,
в которых она непрерывна, нужно:
1. Найти производную
и критические точки, в которых
=0
или не существует, а сама функция
непрерывна, и которые лежат внутри
области определения функции.
2а. Определить знак
слева и справа от каждой критической
точки.
Если при переходе аргумента х через критическую точку хо:
1)
меняет знак с + на -, то хоесть
точка максимума;
2)
меняет знак с - на +, то хоесть
точка минимума;
3)
не меняет знака, то в точке хонет
экстремума.
Иногда проще исследовать критические
точки, где
,
по знаку второй производной, - вместо
правила 2а можно пользоваться следующим
правилом:
2б. Найти вторую производную
и определить ее знак в каждой критической
точке.
Если в критической точке хо, где:
1)
>0,
то хоесть точка максимума;
2)
<0,
то хоесть точка минимума;
3)
=0,
то вопрос о наличии экстремума в точке
хоостается открытым. Такую
критическую точку, как и всякую другую,
можно исследовать по правилу 2а.
Далее следует найти экстремумы функции, т.е. вычислить значения функции в найденных точках экстремума.
Выпуклость функции. Точки перегиба
Если в некотором интервале кривая расположена ниже любой своей касательной, то она называется выпуклой вверх, а если она расположена выше любой своей касательной, то называется выпуклой вниз в этом интервале.
Точкой перегиба называется точка на кривой, где меняется направление ее выпуклости.
Направление выпуклости кривой
характеризуется знаком второй производной
:
если в некотором интервале
>0,
то кривая выпукла вниз, а если
<0,
то кривая выпукла вверх в этом интервале.
Абсциссы точек перегиба кривой
,
или графика функцииf(x),
являются точками экстремума производной
.
Поэтому их можно найти по следующему
правилу:
1. Найти
и точки х, в которых
=0
или не существует, а кривая непрерывна
и которые лежат внутри области ее
расположения.
2. Определить знак
слева и справа от каждой из этих точек.
Исследуемая точка х будет абсциссой
точки перегиба, если по разные стороны
от нее
имеет разные знаки.
Интервалы, где кривая выпукла вверх и где она выпукла вниз, определяются из условия, что их границами могут быть только абсциссы точек перегиба, точки разрыва и граничные точки области расположения кривой.