
- •1 Термометры сопротивления: устройство, принцип действия. Источники возникновения погрешностей при измерении температуры термометрами сопротивления и методы их компенсации.
- •2 Логические элементы: -и, -или, -не.
- •Логический элемент и (вентиль) («все или ничего»)
- •Логический элемент или (что-нибудь или все)
- •Логический элемент не (инвертор)
- •3 Позиционные аср: характер переходных процессов, показатели качества, область применения.
- •4 Государственная система приборов и средств автоматизации (гсп).
- •5 Уровнемеры и сигнализаторы уровня: устройство, принцип действия. Источники возникновения погрешности и способы их компенсации.
- •6 Расходомеры переменного перепада давления и тахометрические расходомеры: устройство принцип действия, достоинства и недостатки.
- •7 Влияние п- составляющей закона регулирования на качество переходных процессов аср.
- •8 Статические и астатические элементы аср. Типовые звенья аср: динамические свойства, переходные характеристики.
- •9 Милливольтметры, потенциометры: назначение, принцип действия.
- •10 Структурные схемы соединения типовых звеньев и их преобразования.
- •11 Манометрические термометры, устройство, принцип действия, преимущества, недостатки.
- •12 Исполнительные механизмы назначение, классификация, устройство и область применения.
- •13 Функциональная структура и классификация измерительных устройств. Погрешности измерений, класс точности приборов, поверка.
- •14 Статика и динамика аср. Способы получения уравнений динамики, линейные системы. Линеаризация характеристик реальных элементов.
- •15. Логометры, уравновешенные мосты: назначение, принцип действия.
- •16 Объекты регулирования и их классификация.
- •17 Термоэлектрические преобразователи: устройство, принцип действия. Источники возникновения погрешности при измерении температуры термоэлектрическими преобразователями и способы их компенсации.
- •18 Порядок выбора автоматического регулятора и определение его настроечных параметров.
- •19 Деформационные манометры. Принцип действия, области применения.
- •20 Влияние д- составляющей закона регулирования на качество переходных процессов аср ( на примере пд-регулятора).
- •21.Расходомеры постоянного перепада давления. Индукционные расходомеры: устройство, принцип действия, область применения.
- •22 Влияние и- составляющей закона регулирования на качество переходных процессов аср.
- •23 Расходомеры переменного перепада давления и тахометрические расходомеры: устройство, принцип действия, достоинства и недостатки.
- •24 Структурная схема увк.
- •25 Преобразователи температуры: классификация, области применения.
- •26 Структурная схема цифровой системы управления на основе контроллера.
- •27 Логический элемент и-не, или-не.
- •28 Структурная схема и основная функция устройства аналогового ввода информации.
- •29 Структура распределенной асутп.
- •30 Структурная схема и основная функция устройства дискретного ввода информации.
- •31 Первичные измерительные преобразователи.
- •32 Ацп: схема, принцип действия.
- •33 Структурная схема включения увк в замкнутый контур управления технологическим процессом.
- •34 Цап: схема, принцип действия.
- •35 Качественные показатели переходных процессов, возникающих в аср. Типовые переходные процессы.
- •36 Цель и задачи автоматизации. Основные этапы развития управления производством.
- •37 Автоматические регуляторы. Назначение, классификация, сравнительная характеристика.
- •38 Электрические исполнительные механизмы: электродвигательные и электромагнитные.
- •39 Погрешности измерений.
- •40 Программируемые логические контроллеры (плк) типы и архитектура плк.
- •41 Структурная схема и основная функция устройства дискретного вывода.
- •42 Методы измерений.
- •43 Метрологические характеристики.
- •44 Ультразвуковые расходомеры, устройство, принцип действия, достоинства и недостатки.
- •45 Кориолисовые расходомеры, устройство, принцип действия, достоинство и недостатки.
- •46 Регулирующие органы назначение, основные характеристики, устройство и область применения.
- •47 Динамические свойства объектов управления.
- •48 Сруктурная схема и основная функция устройства аналогового вывода информации.
45 Кориолисовые расходомеры, устройство, принцип действия, достоинство и недостатки.
Расходомер Кориолиса — прибор для измерения расхода, принцип действия которого основан на сдвиге фаз и прямом измерении того, сколько жидкости или газа перемещается по трубе в настоящий момент.
Расходомер Кориолиса от фирмы
Данная технология измерения уникальна, так как это единственный способ измерить одновременно многочисленные технологические параметры в трубопроводе, такие как массовый расход, объемный расход, плотность, температура и даже вязкость.
Принцип действия расходомера Кориолиса
Трубка расположена внутри каждого расходомера Кориолиса. Вибратор заставляет трубку постоянно вибрировать. При отсутствии потока, измерительная трубка вибрирует равномерно. Сенсоры, расположенные на входе и выходе с точностью определяют основное колебание. Как только жидкость начинает перемещаться по измерительной трубе, на имеющуюся вибрацию накладывается дополнительное колебание в результате инерции жидкости.
Схема расходомера Кориолиса
Вследствие эффекта Кориолиса вибрация трубки на входе и выходе отличается друг от друга. Высокочувствительный сенсор отмечает данное изменение в вибрации трубки в условиях времени и пространства. Подобное явление называется сдвигом фаз и прямым измерением того, сколько жидкости или газа перемещается по трубе в настоящий момент. Чем выше скорость потока и таким образом общий поток, тем больше вибрация измерительной трубки.
Применение принципа измерения при использовании расходомера Кориолиса на этом не заканчивается. Он также может быть использован для одновременного определения плотности потока жидкости. Для этого сенсоры также фиксируют частоту вибрации. Другими словами, учитывается частота движения трубки вперед и назад за 1 секунду. Трубка, заполненная водой, вибрирует чаще, чем трубка, заполненная медом, например, плотность которого намного выше. Таким образом, частота вибрации является прямым измерением плотности жидкости. И плотность, и расход определяются одновременно, но независимо друг от друга при вибрации трубки.
46 Регулирующие органы назначение, основные характеристики, устройство и область применения.
Регулирующий орган в системе регулирования воздействует непосредственно на объект регулирования обычно путем изменения количества подводимой к объекту регулируемой среды. При выборе регулирующего органа необходимо согласовать его характеристики с характеристикой работы других элементов системы регулирования.
Выбор регулирующего органа обычно определяется следующими основными факторами: 1) физическими свойствами регулирующей среды; 2) требуемым характером воздействия на регулируемую среду; 3) надежностью.
По принципу действия регулирующие органы можно разделить на неэлектрические и электрические.
К неэлектрическим регулирующим органам относятся: 1) регулирующие клапаны (вентили); 2) регулирующие заслонки (задвижки); 3) комбинированные устройства.
К электрическим регулирующим органам следует отнести: 1) реостаты; 2) фазовращатели.
Регулирующие клапаны
Как уже отмечалось, регулирующий клапан служит для изменения количества подводимого к объекту регулирования потока жидкости, пара, газа, воздуха и т. д. Изменение потока производится степенью открытия проходного сечения клапана. Клапаны изготовляются размером от 6 до 400 мм. Клапаны бывают односедельные (рис. 10 а) и двухседельные (рис. 10 б). Двухседельные клапаны получили большое распространение благодаря меньшему усилию, необходимому для их перемещения по сравнению с односедельными.
Регулирующие заслонки
Регулирующие (дроссельные) заслонки получили широкое применение для регулирования потока газа и пара при небольшом избыточном давлении или вакууме в трубопроводах большого диаметра. Это объясняется их конструктивной простотой, достаточно хорошими регулировочными свойствами и небольшими потерями давления. Прямоугольные заслонки имеют наименьшую зависимость между степенью открытия и приростом проходного сечения.