
- •1 Термометры сопротивления: устройство, принцип действия. Источники возникновения погрешностей при измерении температуры термометрами сопротивления и методы их компенсации.
- •2 Логические элементы: -и, -или, -не.
- •Логический элемент и (вентиль) («все или ничего»)
- •Логический элемент или (что-нибудь или все)
- •Логический элемент не (инвертор)
- •3 Позиционные аср: характер переходных процессов, показатели качества, область применения.
- •4 Государственная система приборов и средств автоматизации (гсп).
- •5 Уровнемеры и сигнализаторы уровня: устройство, принцип действия. Источники возникновения погрешности и способы их компенсации.
- •6 Расходомеры переменного перепада давления и тахометрические расходомеры: устройство принцип действия, достоинства и недостатки.
- •7 Влияние п- составляющей закона регулирования на качество переходных процессов аср.
- •8 Статические и астатические элементы аср. Типовые звенья аср: динамические свойства, переходные характеристики.
- •9 Милливольтметры, потенциометры: назначение, принцип действия.
- •10 Структурные схемы соединения типовых звеньев и их преобразования.
- •11 Манометрические термометры, устройство, принцип действия, преимущества, недостатки.
- •12 Исполнительные механизмы назначение, классификация, устройство и область применения.
- •13 Функциональная структура и классификация измерительных устройств. Погрешности измерений, класс точности приборов, поверка.
- •14 Статика и динамика аср. Способы получения уравнений динамики, линейные системы. Линеаризация характеристик реальных элементов.
- •15. Логометры, уравновешенные мосты: назначение, принцип действия.
- •16 Объекты регулирования и их классификация.
- •17 Термоэлектрические преобразователи: устройство, принцип действия. Источники возникновения погрешности при измерении температуры термоэлектрическими преобразователями и способы их компенсации.
- •18 Порядок выбора автоматического регулятора и определение его настроечных параметров.
- •19 Деформационные манометры. Принцип действия, области применения.
- •20 Влияние д- составляющей закона регулирования на качество переходных процессов аср ( на примере пд-регулятора).
- •21.Расходомеры постоянного перепада давления. Индукционные расходомеры: устройство, принцип действия, область применения.
- •22 Влияние и- составляющей закона регулирования на качество переходных процессов аср.
- •23 Расходомеры переменного перепада давления и тахометрические расходомеры: устройство, принцип действия, достоинства и недостатки.
- •24 Структурная схема увк.
- •25 Преобразователи температуры: классификация, области применения.
- •26 Структурная схема цифровой системы управления на основе контроллера.
- •27 Логический элемент и-не, или-не.
- •28 Структурная схема и основная функция устройства аналогового ввода информации.
- •29 Структура распределенной асутп.
- •30 Структурная схема и основная функция устройства дискретного ввода информации.
- •31 Первичные измерительные преобразователи.
- •32 Ацп: схема, принцип действия.
- •33 Структурная схема включения увк в замкнутый контур управления технологическим процессом.
- •34 Цап: схема, принцип действия.
- •35 Качественные показатели переходных процессов, возникающих в аср. Типовые переходные процессы.
- •36 Цель и задачи автоматизации. Основные этапы развития управления производством.
- •37 Автоматические регуляторы. Назначение, классификация, сравнительная характеристика.
- •38 Электрические исполнительные механизмы: электродвигательные и электромагнитные.
- •39 Погрешности измерений.
- •40 Программируемые логические контроллеры (плк) типы и архитектура плк.
- •41 Структурная схема и основная функция устройства дискретного вывода.
- •42 Методы измерений.
- •43 Метрологические характеристики.
- •44 Ультразвуковые расходомеры, устройство, принцип действия, достоинства и недостатки.
- •45 Кориолисовые расходомеры, устройство, принцип действия, достоинство и недостатки.
- •46 Регулирующие органы назначение, основные характеристики, устройство и область применения.
- •47 Динамические свойства объектов управления.
- •48 Сруктурная схема и основная функция устройства аналогового вывода информации.
40 Программируемые логические контроллеры (плк) типы и архитектура плк.
Программи́руемый логи́ческий контро́ллер (сокр. ПЛК; более точный перевод на русский — контроллер с программируемой логикой), программируемый контроллер — промышленный контроллер, используемый для автоматизации технологических процессов.
В качестве основного режима работы ПЛК выступает его длительное автономное использование, зачастую в неблагоприятных условиях окружающей среды, без серьёзного обслуживания и практически без вмешательства человека.
Иногда на ПЛК строятся системы числового программного управления станков.
ПЛК — устройства, предназначенные для работы в системах реального времени.
ПЛК имеют ряд особенностей, отличающих их от прочих электронных приборов, применяемых в промышленности:
в отличие от микроконтроллера (однокристального компьютера) — микросхемы, предназначенной для управления электронными устройствами — областью применения ПЛК обычно являются автоматизированные процессы промышленного производства в контексте производственного предприятия;
в отличие от компьютеров, ориентированных на принятие решений и управление оператором, ПЛК ориентированы на работу с машинами через развитый ввод сигналов датчиков и вывод сигналов на исполнительные механизмы;
в отличие от встраиваемых систем ПЛК изготавливаются как самостоятельные изделия, отдельные от управляемого при его помощи оборудования.
В системах управления технологическими объектами логические команды, как правило, преобладают над арифметическими операциями над числами с плавающей точкой, что позволяет при сравнительной простоте микроконтроллера (шины шириной 8 или 16 разрядов), получить мощные системы, действующие в режиме реального времени. В современных ПЛК числовые операции в языках их программирования реализуются наравне с логическими. Все языки программирования ПЛК имеют лёгкий доступ к манипулированию битами в машинных словах, в отличие от большинства высокоуровневых языков программирования современных компьютеров.
41 Структурная схема и основная функция устройства дискретного вывода.
Основная функция дискретного вывода – это функция ключа управляющего источником тока или напряжение.
Это может быть полупроводниковый ключ – для коммутации малых нагрузок с высокой скоростью
Или релейный ключ – для коммутации больших нагрузок с меньшей скоростью.
Каждый бит выходного регистра может использоваться для управления каких-либо объёмов
Число замыканий можно задавать программно в УВК (управляющий вычислительный комплекс).
42 Методы измерений.
Выделяют 2 группы методов:
Метод непосредственной оценки – измеряемая величина оправляется по шкале прибора прямого действия (в нем сигнал измерительной информации передается в одном направление), характеризуется высокой скоростью, не высокой точностью (давление по манометру)
Методы сравнения с мерой – измеряемая величина сравнивается с другой физической величиной воспроизводимой мерой:
Дифференциальный метод – часть измеряемой величины уравновешивается мерой, а остальная часть по шкале прибора (весы настольные циферблатные)
Нулевой метод – измеряемая величина сравнивается с мерой, разность доводиться до нуля ( весы открытые)
Достоинство: высокая точность
Недостатки: продолжительность, необходимость разнокалиберных мер, цена.
М
етод
замещения – метод сравнения
с мерой, в котором измеряемую величину
замещают известной величиной,
воспроизводимой мерой
Метод
дополнительный – может
служить взвешивание груза X на
равно плечных весах (рис.2), когда масса
груза определяется массой гирь,
уравновешивающих воздействие груза на
рычаг весов. Состояние равновесия
определяется по положению указателя
нуль-индикатора, который в этом
случае
должен находиться на нулевой отметке.