
- •1 Термометры сопротивления: устройство, принцип действия. Источники возникновения погрешностей при измерении температуры термометрами сопротивления и методы их компенсации.
- •2 Логические элементы: -и, -или, -не.
- •Логический элемент и (вентиль) («все или ничего»)
- •Логический элемент или (что-нибудь или все)
- •Логический элемент не (инвертор)
- •3 Позиционные аср: характер переходных процессов, показатели качества, область применения.
- •4 Государственная система приборов и средств автоматизации (гсп).
- •5 Уровнемеры и сигнализаторы уровня: устройство, принцип действия. Источники возникновения погрешности и способы их компенсации.
- •6 Расходомеры переменного перепада давления и тахометрические расходомеры: устройство принцип действия, достоинства и недостатки.
- •7 Влияние п- составляющей закона регулирования на качество переходных процессов аср.
- •8 Статические и астатические элементы аср. Типовые звенья аср: динамические свойства, переходные характеристики.
- •9 Милливольтметры, потенциометры: назначение, принцип действия.
- •10 Структурные схемы соединения типовых звеньев и их преобразования.
- •11 Манометрические термометры, устройство, принцип действия, преимущества, недостатки.
- •12 Исполнительные механизмы назначение, классификация, устройство и область применения.
- •13 Функциональная структура и классификация измерительных устройств. Погрешности измерений, класс точности приборов, поверка.
- •14 Статика и динамика аср. Способы получения уравнений динамики, линейные системы. Линеаризация характеристик реальных элементов.
- •15. Логометры, уравновешенные мосты: назначение, принцип действия.
- •16 Объекты регулирования и их классификация.
- •17 Термоэлектрические преобразователи: устройство, принцип действия. Источники возникновения погрешности при измерении температуры термоэлектрическими преобразователями и способы их компенсации.
- •18 Порядок выбора автоматического регулятора и определение его настроечных параметров.
- •19 Деформационные манометры. Принцип действия, области применения.
- •20 Влияние д- составляющей закона регулирования на качество переходных процессов аср ( на примере пд-регулятора).
- •21.Расходомеры постоянного перепада давления. Индукционные расходомеры: устройство, принцип действия, область применения.
- •22 Влияние и- составляющей закона регулирования на качество переходных процессов аср.
- •23 Расходомеры переменного перепада давления и тахометрические расходомеры: устройство, принцип действия, достоинства и недостатки.
- •24 Структурная схема увк.
- •25 Преобразователи температуры: классификация, области применения.
- •26 Структурная схема цифровой системы управления на основе контроллера.
- •27 Логический элемент и-не, или-не.
- •28 Структурная схема и основная функция устройства аналогового ввода информации.
- •29 Структура распределенной асутп.
- •30 Структурная схема и основная функция устройства дискретного ввода информации.
- •31 Первичные измерительные преобразователи.
- •32 Ацп: схема, принцип действия.
- •33 Структурная схема включения увк в замкнутый контур управления технологическим процессом.
- •34 Цап: схема, принцип действия.
- •35 Качественные показатели переходных процессов, возникающих в аср. Типовые переходные процессы.
- •36 Цель и задачи автоматизации. Основные этапы развития управления производством.
- •37 Автоматические регуляторы. Назначение, классификация, сравнительная характеристика.
- •38 Электрические исполнительные механизмы: электродвигательные и электромагнитные.
- •39 Погрешности измерений.
- •40 Программируемые логические контроллеры (плк) типы и архитектура плк.
- •41 Структурная схема и основная функция устройства дискретного вывода.
- •42 Методы измерений.
- •43 Метрологические характеристики.
- •44 Ультразвуковые расходомеры, устройство, принцип действия, достоинства и недостатки.
- •45 Кориолисовые расходомеры, устройство, принцип действия, достоинство и недостатки.
- •46 Регулирующие органы назначение, основные характеристики, устройство и область применения.
- •47 Динамические свойства объектов управления.
- •48 Сруктурная схема и основная функция устройства аналогового вывода информации.
37 Автоматические регуляторы. Назначение, классификация, сравнительная характеристика.
Автоматический регулятор–это средство автоматизации, получающее, усиливающее и преобразующее сигнал отклонения регулируемой величины и целенаправленно воздействующее на объект регулирования; он обеспечивает поддержание заданного значения регулируемой величины или изменение ее значения по заданному закону.
Автоматические регуляторы классифицируются в зависимости от назначения, принципа действия, конструктивных особенностей, вида используемой энергии и др.
По конструктивным признакам автоматические регуляторы подразделяются на аппаратные, приборные, агрегатные и модульные (элементные).
Регуляторы аппаратного типа конструктивно представляют собой техническое устройство, работающее в комплекте с первичным измерительным преобразователем. Аппаратные автоматические регуляторы работают независимо(параллельно)от средств измерения данного технологического параметра.
Регуляторы приборного типа работают только в комплекте с вторичным измерительным прибором. Приборные регуляторы не имеют непосредственной связи с первичным измерительным преобразователем.
Автоматические регуляторы, построенные по модульному (элементному) принципу, состоят из отдельных модулей (элементов), выполняющих отдельные операции. Входные и выходные сигналы модулей унифицированы. Это позволяет собирать автоматические регуляторы различного функционального назначения.
Автоматические регуляторы, построенные по агрегатному (блочному) принципу, состоят из отдельных унифицированных блоков, выполняющих определенные функции. Входные и выходные сигналы этих блоков унифицированы. Это позволяет из блоков проектировать автоматические регуляторы различного функционального назначения.
В зависимости от источника используемой энергии автоматические регуляторы подразделяются на регуляторы прямого и непрямого действия.
В регуляторах прямого действияодновременно с измерением регулируемой величины от объекта регулирования отбирается часть энергии, которая используется для работы регулятора и воздействия на его исполнительный механизм–регулирующий орган объекта регулирования. Таким образом, к автоматической системе «объект-регулятор» энергия извне не подводится.
В автоматических регуляторах непрямого действиядля работы регулятора и воздействия на его исполнительный механизм подводится энергия извне.
В зависимости от вида используемой энергии регуляторы непрямого действия подразделяются на
электрические (электромеханические, электронные),
пневматические,
гидравлические
комбинированные (электропневматические, электрогидравлические).
Электрические автоматические регуляторы применяются главным образом для регулирования на невзрывоопасных объектах при больших расстояниях от пункта управления до объекта регулирования.
Пневматические автоматические регуляторы применяются во взрыво- и пожароопасных зонах при небольших расстояниях (до 400м) от пункта управления до объекта регулирования.
Гидравлическиерегуляторы применяются во взрыво- и пожароопасных зонах, как правило, при непосредственном размещении элементов регулятора в зоне объекта регулирования.
Комбинированныерегуляторы применяются в случаях, когда необходимо использовать отдельные преимущества электро-, пневмо- или гидрорегуляторов.
По характеру изменения регулирующего воздействия автоматические регуляторы подразделяются на регуляторы с линейными нелинейным законами регулирования.
По виду регулируемого параметра автоматические регуляторы подразделяются на регуляторы температуры, давления, разрежения, расхода, уровня, состава и содержания веществаи т.п.