Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛабПр ТДиТМО.doc
Скачиваний:
118
Добавлен:
10.02.2015
Размер:
1.77 Mб
Скачать

Определение теплопроводности твердых материалов методом плоского слоя

Цель работы: изучение методики экспериментального определения коэффициента

теплопроводности твердых материалов методом пластины.

Задание:1. Определить коэффициент теплопроводности исследуемого материала.

2. Определить зависимость коэффициента теплопроводности от температуры

исследуемого материала.

  1. ОСНОВНЫЕ ПОЛОЖЕНИЯ.

Теплообмен– это самопроизвольный необратимый процесс переноса теплоты в пространстве при наличии разности температур. Существуют три основных способа переноса теплоты, существенно различающихся между собой по своей физической природе:

  • теплопроводность;

  • конвекция;

  • тепловое излучение.

На практике теплота, как правило, переносится одновременно несколькими способами, но знание этих процессов невозможно без изучения элементарных процессов теплообмена.

Теплопроводностьюназывается процесс передачи теплоты, обусловленный тепловым движением микрочастиц. В газах и жидкостях перенос теплоты теплопроводностью осуществляется посредством диффузии атомов и молекул. В твердых телах свободное движение атомов и молекул по всему объёму вещества невозможно и сводится только к их колебательному движению относительно определенных положений равновесия. Поэтому процесс теплопроводности в твердых телах обусловлен возрастанием амплитуды этих колебаний, распространяемым в объёме тела за счёт возмущения силовых полей между колеблющимися частицами. В металлах перенос теплоты теплопроводностью происходит не только за счет колебаний ионов и атомов, находящихся в узлах кристаллической решетки, но и за счет движения свободных электронов, образующих так называемый «электронный газ». В связи с наличием в металлах дополнительных носителей тепловой энергии в виде свободных электронов теплопроводность металлов существенно выше, чем твердых диэлектриков.

При изучении процесса теплопроводности используются следующие основные понятия:

Количество теплоты (Q)– тепловая энергия, проходящая за всё время процессачерез поверхность произвольной площадьюF. В системе СИ измеряется в джоулях (Дж).

Тепловой поток (тепловая мощность) (Q)– количество теплоты, проходящее в единицу времени через поверхность произвольной площадьюF.

В системе СИ тепловой поток измеряется в ваттах (Вт).

Плотность теплового потока (q)– количество теплоты, проходящее в единицу времени через единицу поверхности.

В системе СИ измеряется в Вт/м2.

Температурное поле– совокупность значений температуры в данный момент времени во всех точках пространства, занятого телом. Если температура во всех точках температурного поля с течением времени не изменяется, то такое поле называетсястационарным, если изменяется, то –нестационарным.

Поверхности, образованные точками, имеющими одинаковую температуру, называются изотермическими.

Температурный градиент (grad T)– вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно, определяемый как предел отношения изменения температуры между двумя изотермическими поверхностями к расстоянию между ними по нормали, когда это расстояние стремится к нулю. Или иными словами температурный градиент - это производная от температуры по этому направлению.

Температурный градиент характеризует скорость изменения температуры в направлении по нормали к изотермической поверхности.

Процесс теплопроводности характеризует основной закон теплопроводности – закон Фурье(1822 г.). Согласно этому закону плотность теплового потока, передаваемого посредством теплопроводности, прямо пропорциональна температурному градиенту :

где - коэффициент теплопроводности вещества, Вт/(мград).

Знак (-) показывает, что тепловой поток и температурный градиент противоположны по направлению.

Коэффициент теплопроводностипоказывает какое количество теплоты передается в единицу времени через единицу поверхности при температурном градиенте равном единице.

Коэффициент теплопроводности является важной теплофизической характеристикой материала и знание его необходимо при выполнении тепловых расчетов, связанных с определением тепловых потерь через ограждающие конструкции зданий и сооружений, стенки машин и аппаратов, расчете тепловой изоляции, а также при решении множества других инженерных задач.

Другой важный закон теплопроводности – закон Фурье-Кирхгофа, определяющий характер изменения температуры в пространстве и во времени при теплопроводности. Другое его название –дифференциальное уравнение теплопроводности, потому что оно получено методами теории математического анализа на основе закона Фурье. Для 3-х мерного нестационарного температурного поля дифференциальное уравнение теплопроводности имеет следующий вид:

,

где - коэффициент температуропроводности, характеризующий теплоинерционные свойства материала,

,Cp,- соответственно коэффициент теплопроводности, изобарная теплоёмкость и плотность вещества;

- оператор Лапласа.

Для одномерного стационарного температурного поля () дифференциальное уравнение теплопроводности приобретает простой вид

Интегрируя уравнения (1) и (2), можно определить плотность теплового потока через тело и закон изменения температуры внутри тела при теплообмене теплопроводностью. Для получения решения необходимо задание условий однозначности.

Условия однозначности– это дополнительные частные данные, характеризующие рассматриваемую задачу. Они включают:

-геометрические условия, характеризующие форму и размеры тела;

-физические условия, характеризующие физические свойства тела;

  • временные (начальные) условия, характеризующие распределение температуры в начальный момент времени;

  • граничные условия, характеризующие особенности теплообмена на границах тела. Различают граничные условия 1-го, 2-го и 3-го рода.

При граничных условиях 1-го родазадано распределение температур на поверхности тела. В этом случае требуется определить плотность теплового потока через тело.

При граничных условиях 2-го родазаданы плотность теплового потока и температура одной из поверхностей тела. Требуется определить температуру другой поверхности.

При граничных условиях 3-го родадолжны быть известны условия теплоотдачи между поверхностями тела и средами, омывающими их снаружи. По этим данным определяется плотность теплового потока. Этот случай относится к совместному процессу переноса теплоты теплопроводностью и конвекцией, называемомутеплопередачей.

Рассмотрим наиболее простой пример для случая теплопроводности через плоскую стенку. Плоскойназывают стенку, толщина которой значительно меньше двух других её размеров – длины и ширины. В этом случае условия однозначности могут быть заданы следующим образом:

  • геометрические: известна толщина стенки. Температурное поле одномерное, следовательно температура изменяется только в направлении оси Х и тепловой поток направлен по нормали к поверхностям стенки;.

  • физические: известен материал стенки и его коэффициент теплопроводности, причем для всего тела=const;

  • временные: температурное поле во времени не изменяется, т.е. является стационарным;

  • граничные условия:1-го рода, температуры стенки составляютT1иT2.

Требуется определить закон изменения температуры по толщине стенки T=f(Х) и плотность теплового потока через стенкуq.

Для решения задачи используем уравнения (1) и (3). С учетом принятых граничных условий (при x=0T=T1; приx=T=T2) после двойного интегрирования уравнения (3) получаем закон изменения температуры по толщине стенки

,

Распределение температуры в плоской стенке показано на рис.1.

Рис.1. Распределение температуры в плоской стенке.

Плотность теплового потока тогда определяется согласно выражению

,

Определение коэффициента теплопроводности теоретическим путем не может дать точности результата, необходимой для современной инженерной практики, поэтому единственным надежным способом остается его экспериментальное определение.

Один из известных экспериментальных методов определения являетсяметод плоского слоя. Согласно данному методу коэффициент теплопроводности материала плоской стенки может быть определен на основе уравнения (5)

;

В этом случае полученное значение коэффициента теплопроводности относится к среднему значению температуры Tm= 0,5 (T1+T2).

Несмотря на свою физическую простоту, практическая реализация данного метода имеет свои сложности, связанные с трудностью создания одномерного стационарного температурного поля в исследуемых образцах и учётом тепловых потерь.

  1. ОПИСАНИЕ ЛАБОРАТОРНОГО СТЕНДА.

Определение коэффициента теплопроводности проводится на лабораторной установке, основанной на методе имитационного моделирования реальных физических процессов. Установка состоит из ПЭВМ, связанной с макетом рабочего участка, который отображается на экране монитора. Рабочий участок создан по аналогии с реальным и его схема представлена на рис. 2.

Рис.2. Схема рабочего участка установки

Рабочий участок состоит из 2-х фторопластовых образцов 12, выполненных в форме дисков толщиной = 5 мм и диаметромd= 140 мм. Образцы помещены между нагревателем 10 высотойh= 12 мм и диаметромdн= 146 мм и холодильником 11, охлаждаемым водой. Создание теплового потока осуществляется нагревательным элементом с электрическим сопротивлениемR= 41 Ом и холодильником 11 со спиральными канавками для направленной циркуляции охлаждающей воды. Таким образом, тепловой поток, проходящий через исследуемые фторопластовые образцы, уносится протекающей через холодильник водой. Часть теплоты от нагревателя уходит через торцевые поверхности в окружающую среду, поэтому для уменьшения этих радиальных потерь предусмотрен теплоизоляционный кожух 13, выполненный из асбоцемента (к= 0,08 Вт/(мград)). Кожух высотойhк = 22 мм выполнен в виде полого цилиндра с внутренним диаметромdн= 146 мм и внешним диаметромdк= 190 мм. Температура измеряется с помощью семи хромель-копелевых термопар (тип ХК) поз. 1…7, установленных в различных точках рабочего участка. Переключатель температурных датчиков 15 позволяет последовательно измерять термо-ЭДС всех семи температурных датчиков. Термопара 7 установлена на внешней поверхности теплоизоляционного кожуха для определения тепловых утечек через него.

  1. ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ.

3.1. Выбирается температурный режим работы установки посредством задания температуры горячей поверхности пластин Tгв пределах от 35С до 120С.

3.2. На пульте установки последовательно включаются тумблеры питания индикаторных приборов, регистрирующих напряжение на электронагревателе U, термо-ЭДС температурных датчиковEи тумблер включения нагрева.

3.3. Плавно вращая ручку реостата, устанавливается нужное напряжение на нагревателе. Реостат выполнен в шаговом варианте, поэтому напряжение изменяется ступенчато. Напряжение Uи температураTгдолжны находиться в соответствии друг другу согласно зависимости, представленной на рис.3.

Рис.3. Рабочая зона нагрева.

3.4. Путем последовательного опроса датчиков температуры с помощью переключателя 15 определяются значения термо-ЭДС семи термопар, которые вместе со значением Uзаносятся в протокол эксперимента (см. табл.1). Регистрация показаний производится по индикаторным приборам на пульте управления, показания которых дублируются на мониторе ПЭВМ.

3.5. По окончании опыта все регулирующие органы установки переводятся в исходное положение.

3.6. Проводятся повторные опыты (всего их количество должно быть не менее 3-х) и при других значениях Tгв порядке, предусмотренном п.п. 3.1…3.5.

  1. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ.

4.1. По градуировочной характеристике хромель-копелевой термопары показания температурных датчиков переводятся в градусы по шкале Кельвина..

4.2. Определяются средние температуры внутренней горячей и внешней холодной поверхностей образцов

где i– номер термопары.

4.3. Определяется полный тепловой поток, создаваемый электрическим нагревателем

, Вт

где U– напряжение электрического тока, В;

R= 41 Ом – сопротивление электрического нагревателя.

4.4. Определяется тепловой поток, теряемый в результате теплопередачи через кожух

где k– коэффициент, характеризующий процесс переноса теплоты через кожух.

, Вт/(м2град)

где к= 0,08 Вт/(мград) – коэффициент теплопроводности материала кожуха;

dн= 0,146 м – наружный диаметр нагревателя;

dк= 0,190 м – внешний диаметр кожуха;

hн= 0,012 м – высота нагревателя;

hк= 0,022 м – высота кожуха.

Tт– температура наружной поверхности кожуха, определяемая 7-й термопарой

4.5. Определяется тепловой поток, проходящий через исследуемые образцы посредством теплопроводности

, Вт

4.6. Определяется коэффициент теплопроводности исследуемого материала

, Вт/(мград)

где Q- тепловой поток, проходящий через исследуемый образец посредством теплопроводности, Вт;

 = 0,005 м – толщина образца;

- площадь поверхности одного образца, м2;

d= 0,140 м – диаметр образца;

Tг,Tх– температуры соответственно горячей и холодной поверхностей образца, К.

4.7. Коэффициент теплопроводности зависит от температуры, поэтому полученные значения относят к средней температуре образца

Результаты обработки опытных данных заносятся в таблицу 1.

Таблица 1

Результаты измерений и обработки опытных данных

№№

режи-ма.

U, В

Показания термопар, мВ/К

Tг

Tх

Tm

j

0

b

Е1

Т1

Е2

Т2

Е3

Т3

Е4

Т4

Е5

Т5

Е6

Т6

Е7

Т7

1

2

3

4.8. Используя графоаналитический метод обработки полученных результатов, получают зависимость коэффициента теплопроводности исследуемого материала от средней температуры образцаTmв виде

где 0иb- определяются графическим путем на основании анализа графика зависимости=f(Tm).

  1. КОНТРОЛЬНЫЕ ВОПРОСЫ

  1. Какие существуют основные способы переноса теплоты?

  2. Что называется теплопроводностью?

  3. В чем особенности механизма теплопроводности в проводниках и твердых диэлектриках?

  4. Какие законы описывают процесс теплопроводности?

  5. Что называется плоской стенкой?

  6. Что такое граничные условия?

  7. Каков характер изменения температуры в плоской стенке?

  8. В чем заключается физический смысл коэффициента теплопроводности?

  9. Для чего нужно знание коэффициента теплопроводности различных материалов и как определяется его значение?

  10. В чем заключаются методические особенности метода плоского слоя?

ИСЛЕДОВАНИЕ ТЕПЛООТДАЧИ ПРИ СВОБОДНОЙ КОНВЕКЦИИ

Цель работы: изучить закономерности конвективного теплообмена на примере теплоотдачи при свободной конвекции для случаев поперечного и продольного обтекания нагретой поверхности. Приобрести навыки обработки результатов опытов и представления их в обобщенном виде.

Задание:

1. Определить экспериментальные значения коэффициентов теплоотдачи от горизонтального цилиндра и вертикального цилиндра к среде при свободной конвекции.

2. Путем обработки опытных данных получить параметры критериальных уравнений, характеризующих процесс свободной конвекции относительно горизонтальной и вертикальной поверхности.

  1. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ.

Существуют три основных способа переноса теплоты, существенно отличающихся друг от друга по своей физической природе:

  • теплопроводность;

  • конвекция;

  • тепловое излучение.

При теплопроводности носителями тепловой энергии являются микрочастицы вещества – атомы и молекулы, при тепловом излучении – электромагнитные волны.

Конвекция– это способ переноса теплоты за счёт перемещения макроскопических количеств вещества из одной точки пространства в другую.

Таким образом, конвекция возможна только в средах, обладающих свойством текучести – газах и жидкостях. В теории теплообмена они обобщенно обозначаются термином «жидкость», не проводя различия, если это отдельно не требуется оговаривать, между капельными жидкостями и газами. Процесс переноса теплоты конвекцией, как правило, сопровождается теплопроводностью. Такой процесс называетсяконвективным теплообменом.

Конвективный теплообмен– это совместный процесс переноса теплоты конвекцией и теплопроводностью.

В инженерной практике чаще всего имеют дело с процессом конвективного теплообмена между поверхностью твердого тела (например, поверхность стенки печи, нагревательного прибора и т.п.) и текучей средой, омывающей эту поверхность. Этот процесс называется теплоотдачей.

Теплоотдача– частный случай конвективного теплообмена между поверхностью твердого тела (стенкой) и омывающей её текучей средой.

Различают вынужденную и свободную (естественную)конвекцию.

Вынужденная конвекцияпроисходит под действием сил давления, которые создаются принудительно, например насосом, вентилятором и т.п.

Свободная или естественная конвекцияпроисходит под действием массовых сил, имеющих различную природу: гравитационных, центробежных, электромагнитных и др.

На Земле свободная конвекция происходит в условиях действия силы тяжести, поэтому её называют тепловой гравитационной конвекцией. Движущей силой процесса в этом случае является подъёмная сила, которая возникает в среде при наличии неоднородности в распределении плотности внутри рассматриваемого объёма. При теплообмене такая неоднородность возникает за счет того, что отдельные элементы среды могут находиться при различной температуре. При этом более нагретые, а значит, менее плотные элементы среды под действием подъёмной силы будут перемещаться вверх, перенося вместе с собой теплоту, а более холодные, и значит, более плотные элементы среды будут перетекать на освободившееся место, как это показано на рис. 1.

Рис. 1. Характер движения потоков в жидкости при свободной конвекции

Если в этом месте расположен постоянный источник теплоты, то при нагреве плотность нагреваемых элементов среды уменьшится, и они также начнут всплывать вверх. Так, пока будет иметь место разность плотностей отдельных элементов среды, будет продолжаться их круговорот, т.е. будет продолжаться свободная конвекция. Свободная конвекция, происходящая в больших объёмах среды, где ничто не препятствует развитию конвективных потоков, называется свободной конвекцией в неограниченном пространстве. Свободная конвекция в неограниченном пространстве, например, имеет место при отоплении помещений, нагреве воды в водогрейных котлах и многих других случаях. Если развитию конвективных потоков препятствуют стенки каналов или прослоек, которые заполнены текучей средой, то процесс в этом случае называетсясвободной конвекцией в ограниченном пространстве. Такой процесс имеет место, например, при теплообмене внутри воздушных прослоек между оконными рамами.

Основной закон, описывающий процесс конвективного теплообмена, – закон Ньютона-Рихмана. В аналитической форме для стационарного температурного режима теплообмена он имеет следующий вид:

,

где - элементарное количество теплоты, отдаваемое за элементарный промежуток времениот элементарной поверхности площадью;

- температура стенки;

- температура жидкости;

- коэффициент теплоотдачи.

Коэффициент теплоотдачипоказывает какое количество теплоты отдается в единицу времени от единицы поверхности при разности температур между стенкой и жидкостью в один градус. Единица измерения коэффициента теплоотдачи в системе СИ – Вт/м2∙град. При установившемся стационарном процессе коэффициент теплоотдачи можно определить из выражения:

, Вт/м2∙град

где - тепловой поток, Вт;

- площадь поверхности теплообмена, м2;

- температурный напор между поверхностью и жидкостью, град.

Коэффициент теплоотдачи характеризует интенсивность теплообмена между стенкой и омывающей её жидкостью. По своему физическому характеру конвективный теплообмен является весьма сложным процессом. Коэффициент теплоотдачи зависит от очень большого количества разнообразных параметров – физических свойств жидкости, характера течения жидкости, скорости течения жидкости, размера и формы канала, а также множества других факторов. В связи с этим невозможно дать общую зависимость для нахождения коэффициента теплоотдачи теоретическим путем

Коэффициент теплоотдачи наиболее точно и надежно может быть определен экспериментальным путем на основе уравнения (2). Однако в инженерной практике при расчете процессов теплообмена в различных технических устройствах, как правило, не представляется возможным выполнить опытное определение значения коэффициента теплоотдачи в условиях реального натурного объекта по причине сложности и дороговизны постановки такого эксперимента. В этом случае для решения задачи определения на помощь приходиттеория подобия.

Основное практическое значение теории подобия заключается в том, что она позволяет обобщить результаты отдельного опыта, проведенного на модели в лабораторных условиях, на весь класс реальных процессов и объектов, подобных процессу, изученному на модели. Понятие подобия, хорошо известное в отношении геометрических фигур, может быть распространено и на любые физические процессы и явления.

Класс физических явлений– это совокупность явлений, которые могут быть описаны одной общей системой уравнений и имеющие одинаковую физическую природу.

Единичное явление– это часть класса физических явлений, отличающихся определенными условиями однозначности (геометрическими, физическими, начальными, граничными).

Подобные явления– группа явлений одного класса с одинаковыми условиями однозначности, кроме числовых значений величин, содержащихся в этих условиях.

Теория подобия основана на том, что размерные физические величины, характеризующие явление, можно объединить в безразмерные комплексы, причем так, что число этих комплексов будет меньше, чем число размерных величин. Полученные безразмерные комплексы называютсякритериями подобия. Критерии подобия имеют определенный физический смысл и отражают влияние не одной физической величины, а всей их совокупности, входящей в критерий, что существенно упрощает анализ изучаемого процесса. Сам процесс в этом случае можно представить в виде аналитической зависимостимежду критериями подобия, характеризующими его отдельные стороны. Такие зависимости называютсякритериальными уравнениями. Критерии подобия получили названия по именам ученых, которые внесли существенный вклад в развитие гидродинамики и теории теплообмена – Нуссельта, Прандтля, Грасгофа, Рейнольдса, Кирпичева и других.

Теория подобия базируется на 3-х теоремах подобия.

1-я теорема:

Подобные между собой явления имеют одинаковые критерии подобия.

Эта теорема показывает, что в опытах нужно измерять лишь те физические величины, которые содержатся в критериях подобия.

2-я теорема:

Исходные математические уравнения, характеризующие данное физическое явление, всегда могут быть представлены в виде зависимости между критериями подобия, характеризующими это явление.

Эти уравнения называются критериальными. Эта теорема показывает, что результаты опытов следует представлять в виде критериальных уравнений.

3-я теорема.

Подобны те явления, у которых критерии подобия, составленные из условий однозначности, равны.

Эта теорема определяет условие необходимое для установления физического подобия. Критерии подобия, составленные из условий однозначности, называются определяющими. Они определяют равенство всех остальных илиопределяемыхкритериев подобия, что собственно является уже предметом 1-й теоремы подобия. Таким образом, 3-я теорема подобия развивает и углубляет 1-ю теорему.

При изучении конвективного теплообмена чаще всего используются следующие критерии подобия.

Критерий Рейнольдса (Re)– характеризует соотношение между силами инерции и силами вязкого трения, действующими в жидкости. Значение критерия Рейнольдса характеризует режим течения жидкости при вынужденной конвекции.

,

где - скорость движения жидкости;

- коэффициент кинематической вязкости жидкости;

- определяющий размер.

Критерий Грасгофа (Gr)– характеризует соотношение между силами вязкого трения и подъёмной силой, действующими в жидкости, при свободной конвекции. Значение критерия Грасгофа характеризует режим течения жидкости при свободной конвекции.

,

где - ускорение свободного падения;

- определяющий размер;

- температурный коэффициент объёмного расширения жидкости (для газов, где- определяющая температура по шкале Кельвина);

- температурный напор между стенкой и жидкостью;

- соответственно температура стенки и жидкости;

- коэффициент кинематической вязкости жидкости.

Критерий Нуссельта (Nu)– характеризует соотношение между количеством теплоты, передаваемой посредством теплопроводности и количеством теплоты, передаваемой посредством конвекции при конвективном теплообмене между поверхностью твердого тела (стенкой) и жидкостью, т.е. при теплоотдаче.

,

где - коэффициент теплоотдачи;

- определяющий размер;

- коэффициент теплопроводности жидкости на границе стенки и жидкости.

Критерий Пекле (Pe)– характеризует соотношение между количеством теплоты, принимаемым (отдаваемым) потоком жидкости и количеством теплоты, передаваемым (отдаваемым) посредством конвективного теплообмена.

,

где - скорость потока жидкости;

- определяющий размер;

- коэффициент температуропроводности;

- соответственно коэффициент теплопроводности, изобарная теплоёмкость, плотность жидкости.

Критерий Прандтля (Pr)– характеризует физические свойства жидкости.

,

где - коэффициент кинематической вязкости;

- коэффициент температуропроводности жидкости.

Из рассмотренных критериев подобия видно, что наиболее важный при расчете процессов конвективного теплообмена параметр, характеризующий интенсивность процесса, а именно, коэффициент теплоотдачи входит в выражение для критерия Нуссельта. Это обусловило то, что для решения задач конвективного теплообмена инженерными методами, основанными на использовании теории подобия, этот критерий является наиболее важным из определяемых критериев. Значение коэффициента теплоотдачи в этом случае определяется согласно следующему выражению

В связи с этим критериальные уравнения обычно записываются в форме решения относительно критерия Нуссельта и имеют вид степенной функции

,

где - значения критериев подобия, характеризующих разные стороны рассматриваемого процесса;

- числовые константы, определяемые на основе экспериментальных данных, полученных при изучении класса подобных явлений на моделях опытным путем.

В зависимости от вида конвекции и конкретных условий процесса набор критериев подобия, входящих в критериальное уравнение, значения констант и поправочные множители могут быть различны.

При практическом применении критериальных уравнений важным является вопрос правильного выбора определяющего размера и определяющей температуры. Определяющая температура необходима для правильного определения значений физических свойств жидкости, используемых при расчете значений критериев подобия. Выбор определяющего размера зависит от взаимного расположения потока жидкости и омываемой поверхности, т. е. от характера её обтекания. При этом следует руководствоваться имеющимися рекомендациями для следующих характерных случаев.

  1. Вынужденная конвекция при движении жидкости внутри круглой трубы.

- внутренний диаметр трубы.

  1. Вынужденная конвекция при движении жидкости в каналах произвольного сечения.

- эквивалентный диаметр,

где - площадь поперечного сечения канала;

- периметр сечения.

  1. Поперечное обтекание круглой трубы при свободной конвекции (горизонтальная труба (см. рис.2) при тепловой гравитационной конвекции)

- наружный диаметр трубы.

Рис.2. Характер обтекания горизонтальной трубы при тепловой гравитационной конвекции

  1. Продольное обтекание плоской стенки (трубы) (см. рис. 3) при тепловой гравитационной конвекции.

- высота стенки (длина трубы).

Рис. 3. Характер обтекания вертикальной стенки (трубы) при тепловой гравитационной конвекции.

Определяющая температура необходима для корректного определения теплофизических свойств среды, значения которых изменяются в зависимости от температуры.

При теплоотдаче в качестве определяющей температуры принимается среднее арифметическое между температурой стенки и жидкости

При конвективном теплообмене между отдельными элементами среды внутри рассматриваемого объёма в качестве определяющей температуры принимается среднее арифметическое между температурами элементов среды, участвующих в теплообмене.

В настоящей работе рассмотрены порядок проведения лабораторного эксперимента и методика получения критериальных уравнений для 2-х характерных случаев обтекания нагретой поверхности (поперечного и продольного) при свободной конвекции различных газов относительно горизонтального и вертикального цилиндров.

  1. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.