Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3202

.pdf
Скачиваний:
0
Добавлен:
15.11.2022
Размер:
3.43 Mб
Скачать

Issue № 3 (35), 2017

ISSN 2542-0526

3.Budzulyak B. V., Apostolov A. A., Seleznev N. F., Moiseev L. P. Novye podkhody k organizatsii kontrolya kachestva neftegazovogo stroitel'stva [New approaches to organization of quality control of oil and gas construction]. Informatsionnyy byulleten' «TEKhEKSPERT», 2013, no. 10 (88), pp. 16—20.

4.Budzulyak B. V., Apostolov A. A., Seleznev N. F., Moiseev L. P. Metody snizheniya riskov fal'sifikatsii i kontrafaktsii v stroitel'stve [Methods to reduce risks of falsification and counterfeiting in the construction]. Vestnik MGSU, 2016, no. 10, pp. 5—9.

5.Vladimirtsev A. V., Martsynkovskiy O. A., Nikitin V. M., Shekhanov Yu. F., Shinkevich V. A. Sistema menedzhmenta kachestva v stroitel'nykh organizatsiyakh na urovne trebovaniy mezhdunarodnykh standartov ISO serii 9000 versii 2000 goda «Tsentr kachestva stroitel'stva» [The quality management system in construction organizations at the level of requirements of international standards ISO series 9000 version 2000 "Center for quality construction"]. Pandia. Available at: http://pandia.ru/text/77/152/10331.php

6.Goncharenko O. A., Kochetkova M. V. Vidy i metody kontrolya kachestva stroitel'nykh rabot zashchitnootdelochnogo tsikla [Types and methods of quality control of construction works protective finishing cycle]. Sovremennye nauchnye issledovaniya i innovatsii, 2014, no. 5. Available at: http://web.snauka.ru/issues/2014/05/34375

7.Gorbaneva E. P., Sheykina V. V. [Analysis and methods of determining the risk of project investment and construction activities]. Sbornik nauchnykh statey «Sovremennye problemy i perspektivy razvitiya stroitel'stva, ekspluatatsii ob"ektov nedvizhimosti» [Collection of scientific articles «Contemporary problems and prospects of development of construction, operation of objects of real estate»]. Voronezh, VGASU Publ., 2016, pp. 189—197.

8.Gusev N. I., Presnyakov A. V., Kochetkova M. V. Organizatsionnye reglamenty stroitel'nykh rabot [Organizational regulations of construction works]. Penza, PGUAS Publ., 2008. 179 p.

9.Gusev N. I., Kochetkova M. V., Skachkov Yu. P. Tekhnologiya sozdaniya stroitel'noy produktsii [Technology of creation of building products]. Penza, PGUAS Publ., 2017. 148 p.

10.Grabovyy P. G., Petrova S. N., Poltavtsev S. I., Romanova K. G., Khrustalev V. B., Yarovenko S. M. Riski v sovremennom biznese [Risks in modern business]. Moscow, ALAHC Publ., 1994. 237 p.

11.Dikman L. G. Organizatsiya stroitel'nogo proizvodstva. 4-e izd., pererab. i dop. [Organization of construction industry. 4th edition, revised and enlarged]. Moscow, ASV Publ., 2003. 510 p.

12.Kazakov D. A. Zakonodatel'noe i normativno-tekhnicheskoe regulirovanie v stroitel'stve: kurs lektsiy [Legislative and normative-technical regulation in construction: a course of lectures]. Voronezh, VGASU Publ., 2012.

170p.

13.Kazakov D. A. Stroitel'nyy kontrol': uchebno-prakticheskoe posobie dlya inzhenerno-tekhnicheskogo rabotnika [Construction supervision: training and practical guide for engineering and technical workers]. Ros- tov-on-don, Feniks, 2012. 477 p.

14.Kazakov D. A. Stroitel'nyy kontrol' v neftegazovom komplekse [Construction supervision in the oil and gas industry]. Moscow, Gazprom korporativnyy institut, 2016. 439 p.

15.Lukmanova I. G., ed. Stroitel'nyy kontrol' i upravlenie kachestvom v stroitel'stve [Construction control and quality management in construction]. Voronezh, VGASU Publ., 2016. 185 p.

16.Sentsov S. I. Vliyanie sistemy menedzhmenta kachestva stroitel'stva na bezotkaznost' raboty magistral'nykh truboprovodov. Avtoref. diss. dokt. tekhn. nauk [The impact of the quality management system construction for trouble-free operation of pipelines. Dr. eng. sci. diss.]. Moscow, 2009. 325 p.

41

Russian Journal of Building Construction and Architecture

17.Letchford A. N., Shinkevich V. A., Platonov S. A. et al. Rukovodstvo po kontrolyu kachestva stroitel'nomontazhnykh rabot [Guide to quality control of construction works]. St. Petersburg, 2013.

18.Shinkevich V. A., Letchford A. N. Rukovodstvo po kontrolyu kachestva. Seti inzhenerno-tekhnicheskogo obespecheniya [Guide to quality control. Network engineering support]. ]. St. Petersburg, 2011. 645 p.

19.Reglament po kontrolyu kachestva stroitel'stva genpodryadnymi organizatsiyami na ob"ektakh [Regulations on quality control the construction General contractor on the objects]. Available at: http://noyabrsk- dobycha.gazprom.ru/d/textpage/12/18/reglament-stroitelnogo-kontrolya-genpodryadnykh-organizatsij.pdf

20.Chelnokova V. M., Balberova N. V. Upravlenie kachestvom [Quality management]. St. Petersburg, SPbGASU Publ., 2010. 130 p.

21.Bam J. Strategic sector legislation in Russia: critique and proposal for change. Voprosy rossiyskogo i mezhdunarodnogo prava, 2013, no. 2, pp. 29—62.

22.Seredin P. V., Glotov A. V., Domashevskaya E. P., Lenshin A. S., Smirnov M. S., Arsentyev I. N., Vinokurov D. A., Stankevich A. L., Tarasov I. S. Structural and spectral features of MOCVD AlxGayIn1 − x − yAszP1 − z/GaAs (100) alloys. Semiconductors, 2012, vol. 46, iss. 6, pp. 719–729. doi: 10.1134/S106378261206019X.

42

Issue № 3 (35), 2017

ISSN 2542-0526

DESIGNING AND CONSTRUCTION OF ROADS,SUBWAYS,

AIRFIELDS,BRIDGES AND TRANSPORT TUNNELS

UDC625.7/.8

C. A. Boyko1, Yu. I. Kalgin2, A. S. Strokin3

DEVELOPMENT OF STONE MASTIC ASPHALT MIXTURES WITH ENHANCED WORKABILITY FOR INSTALLATION AND REPAIR OF ROAD SURFACES

Voronezh State Technical University

Russia, Voronezh, tel.: (473) 236-18-89, e-mail: alexmech23@gmail.com 1PhD student of the Dept. of Construction and Operation of Highways

2D. Sc. in Engineering, Prof. of the Dept. of Construction and Operation of Highways 3PhD in Engineering, Assoc. Prof. of the Dept. of Construction and Operation of Highways

Statement of the problem. We consider the problem of the development of stone mastic mixes with improved deformation and durability in the installation and repair of road surfacings to allow one to arrange thin layers of asphalt concrete pavement or lay the mixture in the repair niche.

Results. The results of the full factorial experiment that was performed by means of the method of mathematical planning, the evaluation of the influence of the main structure-forming factors on the deformation-strength characteristics of stone-mastic asphalt concrete are presented.

Conclusions. The results of the analysis of the impact of major structure-forming factors on the deformation-strength characteristics and technological properties of stone mastic mixes are reported. The effective compositions of the stone mastic asphalt mixes with a maximum grain size of up to 10 mm with improved workability and required values of the deformation-strength characteristics for laying or maintaining thin layers of road surfaces.

Keywords: asphalt, bitumen, mineral powder, repairs, crushed stone-mastic mixture.

Introduction

One of the urgent problems facing the road industry is to improve the quality of the maintenance of asphalt concrete surfaces of highly-intensive highways [10]. The currently used technologies for maintaining and repairing asphalt concrete surfaces by means of rough surfacings or wear and tear layers, repairing with monolith or traditional thick asphalt concrete mixes have a number

© Boyko S. А., Kalgin Yu. I., Strokin А. S., 2017

43

Russian Journal of Building Construction and Architecture

of great disadvantages: they are not compatible and not lasting, their physical and mechanical and (or) operational properties (strength, evenness, smoothness), etc. are not high [1—21].

The above disadvantages are not typical of crushed stone-mastic mixes (CSMMs). However, CSMMs are distinctly easy to lay in thin layers (2—3 cm) or for prefabricated repair voids. Improving this property would allow the quality of road maintenance and repair and the durability of asphalt concrete surfacings to be better [9].

1. Assumptions and problem statement, experimental methods

The strength, operational and technological properties of CSMMs are assumed to be completely dependent on their composition. Their original components as well as their percentage proportion in a mix might randomly fluctuate. Finally, determining the physical and mechanical characteristics (e.g., water saturation or limit compression strength) might be randomly erroneous as well.

Let us denote the numerical value of the investigated characteristics using Y and its functional dependence on the parameters using F(X1, X2, X3). The fact that there is random excitation in each experiment as stated above is reflected in an additive Z:

Y F X1,X1,X3 Z ,

(1)

where according to the central limit theorem a random value Z is normally distributed with the parameters M(Z) = 0 and \sigma(Z) = \sigma. Taking the mathematical anticipation M from both parts, we get

M(Y) M F X1,X2,X3 Z F X1,X2,X3 M Z F X1,X2,X3 .

(2)

The last equation means that the original functional connection F(X1, X2, X3) does not express Y itself but the mathematical anticipation for the specified values of the parameters X1, X2, X3:

M (Y ) F ( X 1 , X 2 , X 3 ) .

(3)

Such a dependence is regressive and the law F(X1, X2, X3) is called the regression of Y using X1, X2, X3. Тhe experiment planning theory suggests how it is more effective to select combinations of the parameters X1, X2, X3 (called plans or points) for further effective observation of the approximation of the regression function based on the experimental values Y determined for the selected plans.

The basis for the selection of a variety of plans for their further investigation was the planning method of a complete factor experiment supplemented by some plans in the centre of the variation range. The properties of the regression model were designed and investigated using the licensed software DataFit 7.1.

44

Issue № 3 (35), 2017

ISSN 2542-0526

The varying values were the following factors:

––X1 is the content of a mineral powder in the mineral part of the mix, %;

––X2 is the content of a large-grain filler (crushed stone) in the mineral part, %;

––X3 is the content of bitumen in CSMMs, % (Table 1).

For all the investigated parameters of CSMMs the mathematical model was searched for as a full second-order multinomial from three variables:

Y a

b x

b x

b x

c x x

c x x

c x x

d x2

d x2

d x2

(4)

0

1

1

2

2

3

3

1

1

2

2

1

3

3

2

3

1

1

2

2

3

3

 

followed by removal of insignificant summands.

In order to determine 10 original parameters a0, bi, cj, dk for each of the investigated characteristics Y three parallel series of 9 experiments were performed. In each experiment there was a certain mix that was prepared and investigated according to the guidelines of the complete factor experiment with three independent variable factors X1, X2, X3.

The plan of the experiment and levels of the variation of the factors were identified based on the results of the preliminary experiments (Table 1, 2).

 

 

 

 

Таble 1

 

Change range of three independent factors

 

 

 

 

 

 

 

Value of

Investigated factors

 

Characteristics

 

 

 

X1, сontent of the mineral

X2, соntent of

X3, соntent of

the code

 

powder, %

crushed stone, %

bitumen, %

 

 

 

 

 

 

 

Main level (X0i)

0

15

70

6.5

Variation range (Δi)

X

3.0

5

0.5

Upper level (Xi max)

Xi = +1

18.0

75

7.0

Lower level (Xi min)

Xi = -1

12.0

65

6.0

The response Y = Y(X1, X2, X3) for each point (X1, X2, X3) of the plan of the experiment was an average arithmetic value of the corresponding values of Y observed in three parallel series of the experiments. This increased the accuracy by 1.7 times.

The CSMM mix-10 was researched. The mineral part was a granite crushed stone М 1000 and crushed screenings of granite М 1000 (Pavlovsk Ore Mining and Processing Enterprise of Voronezh region), non-activated limestone mineral powder (Voronezh). A road bitumen BND 60/90 manufactured at the Moscow Oil Processing Plant was used.

The major characteristics of CMMs to be investigated were

––the compression strength limit at the temperature 50 ºС of the dry samples (R50, МPа) Y1;

––average density, g/сm3, Y2;

45

Russian Journal of Building Construction and Architecture

––water saturation W, %, Y3;

––porosity of the mineral part, %, Y4;

––residual porosity, %, Y5;

––depth of loading of the stamp at 40 ºС Y6;

––shear adhesion at the temperature 50 °С, МPа, Y7;

––limit tension strength during breakage at the temperature 0 °С, МPа, Y8.

The plan of the experiment and natural values of the investigated factors at each point are given in Table 2.

 

 

 

 

 

 

 

Таble 2

 

 

 

Plan of the experiment and natural values of the variables

 

 

 

 

 

 

 

 

Plan

Plan of the experiment

Natural values of the variables

 

 

 

 

 

 

 

 

number

X1

X2

 

X3

X1, соntent of the mineral

X2, соntent of

X3, соntent of

 

powder, %

crushed stone, %

bitumen, %

 

 

 

 

 

 

 

 

 

 

 

 

 

1

–1

–1

 

1

12.0

65

6.0

 

 

 

 

 

 

 

 

2

+1

–1

 

–1

18.0

65

6.0

 

 

 

 

 

 

 

 

3

–1

+1

 

–1

12.0

75

6.0

 

 

 

 

 

 

 

 

4

+1

+1

 

–1

18.0

75

6.0

 

 

 

 

 

 

 

 

5

–1

–1

 

+1

12.0

65

7.0

 

 

 

 

 

 

 

 

6

+1

–1

 

+1

18.0

65

7.0

 

 

 

 

 

 

 

 

7

–1

+1

 

+1

12.0

75

7.0

 

 

 

 

 

 

 

 

8

+1

+1

 

+1

18.0

75

7.0

 

 

 

 

 

 

 

 

9

0

0

 

0

15.0

70

6.5

 

 

 

 

 

 

 

 

Generally the model of the investigated characteristics is as follows:

Y a0 b1 x1 b2 x2 b3 x3 с1 x1 x2

с2

 

(5)

x x

 

с x

 

x d

 

x2

d

 

x2

d

 

x2.

3

2

1

2

3

 

1

3

3

1

 

2

 

3

 

 

2. Results of designing the model

In all cases the coefficients d1, d2, d3 were shown to be insignificant and thus assumed to be 0. The model of the index of the limit compression strength at the temperature 50° С Y1 is as follows:

Y1 1.15 .

 

(6)

I.e. for all the suggested experimental data, the sufficient model is a constant.

 

The model of the average density of CMM Y2 is as follows:

 

 

Y2 2.395 0.0025 x1 0.0125 x2 0.0025 x3

0.005 x1 x2 .

(7)

46

Issue № 3 (35), 2017

ISSN 2542-0526

The model of water saturation of CMM Y3 is as follows:

Y3 1.01 0.155 x1

0.445 x 2

0.095 x3

0.1125 x1 x 2

(8)

0.1275 x 2 x3 .

 

 

 

 

The model of porosity of the mineral part of CMM Y4 is as follows:

Y4 17

0.05 x1

0.35 x3 .

(9)

The residual porosity of CMM Y5 is as follows:

Y5

2.5 0.05 x1

0.65 x3 .

(10)

The model of the index of the depth of loading of the stamp at 40 ºС Y6 is as follows:

Y6

2.236 0.0875 x2

0.3125 x3

0.0375 x1

 

(11)

x 2

0.0375 x 2 x3 .

 

 

 

 

 

 

 

The model of the index of the shear adhesion at the temperature 50 °С Y7 is as follows:

Y7 0.21875 0.01125 x2

0.05875 x3

0.01125 x1

 

(12)

x3 0.01625 x2 x3 .

 

 

 

 

 

 

 

The model of the limit tension strength during breakage at the temperature 0 °С is as follows:

Y8

2.105 0.22 x2

0.2625 x3

0.09 x1

 

(13)

x3

0.0576 x2 x3 .

 

 

 

 

 

 

 

The results of regressive modelling are in Table 3 where along with the original data obtained during the experiment there are the values calculated using the corresponding resulting regression model that are in brackets.

Таble 3

Results of the experiment and modelling

Limit compression strength at 50 °С, МPа

Average density, g/сm³

Water saturation, %

Porosity of the mineral part, %

Residual porosity, %

Depth of loading of the stamp at 40 °С, mm

Shear adhesion at 50° С, МPа

Limit tension strength during

breakage at 0 °С, МPа

 

 

 

 

 

 

 

 

 

1.07 (1.15)

2.40 (2.411)

0.98 (0.83)

16.7 (16.7)

3.2 (3.2)

2.0 (2.0113)

0.27 (0.2937)

2.54

(2.335)

 

 

 

 

 

 

 

 

 

1.52 (1.15)

2.42 (2.416)

0.64 (0.745)

16.6 (16.6)

3.1 (3.1)

1.9 (1.9363)

0.34 (0.2937)

2.52

(2.515)

 

 

 

 

 

 

 

 

1.20 (1.15)

2.39 (2.386)

1.36 (1.465)

16.7 (16.7)

3.2 (3.2)

1.8 (1.8363)

0.25 (0.2612)

2.07 (2.01)

 

 

 

 

 

 

 

 

1.06 (1.15)

2.38 (2.391)

1.53 (1.38)

16.6 (16.6)

3.1 (3.1)

1.9 (1.9113)

0.25 (0.2612)

2.34 (2.19)

 

 

 

 

 

 

 

 

 

1.27 (1.15)

2.40 (2.406)

0.48 (0.61)

17.4 (17.4)

1.9 (1.9)

2.7 (2.7113)

0.16 (0.1437)

2.19

(2.105)

 

 

 

 

 

 

 

 

 

0.89 (1.15)

2.41 (2.411)

0.25 (0.075)

17.3 (17.3)

1.8 (1.8)

2.6 (2.6363)

0.15 (0.1437)

2.05

(1.925)

 

 

 

 

 

 

 

 

0.93 (1.15)

2.38 (2.386)

1.93 (1.755)

17.4 (17.4)

1.9 (1.9)

2.4 (2.3863)

0.17 (0.1762)

1.73 (1.55)

 

 

 

 

 

 

 

 

1.26 (1.15)

2.38 (2.386)

1.09 (1.22)

17.3 (17.3)

1.8 (1.8)

2.4 (2.4613)

0.16 (0.1762)

1.40 (1.37)

 

 

 

 

 

 

 

 

0.94 (1.15)

2.41 (2.399)

0.95 (1.01)

17.0 (17.0)

2.5 (2.5)

2.3 (2.2363)

0.28 (0.2187)

1.72 (2)

 

 

 

 

 

 

 

 

 

47

Russian Journal of Building Construction and Architecture

Conclusions

1.The substantiated increase in the content of bitumen and mineral powder in CMMs with the maximum size of the grain of up to 10 mm allows high values of deformation and strength indices to be reached (shear adhesion at the temperature 50 °С, limit compression strength at the temperature 50 °С, limit tension strength during breakage at the temperature 0 °С) and necessary values of physical indices (average density, water saturation, porosity of the mineral part, residual porosity) as well as the depth of loading of the stamp at 40 ºС that are typical of viber monolith asphalt concrete mixes. The results of the experiment showed degrees of the influence of the main structural factors on the properties of foundation asphalt concrete mixes with the maximum size of the grain of up to 100 mm. The most significant factors are the content of bitumen or mineral powder with the amount of crushed stone in the mineral part of CMMs being less significant.

2.For laying thin layers of CMM surfacings with the maximum size of the grain in the mineral part of up to 10 mm it is recommended that mixes with a smaller content of bitumen and a higher content of mineral powder are used. For laying into repairing voids crushed stone mastic mixes with a high content of bitumen, optimal ratio of crushed stone and mineral powder in the mineral part should be used.

3.The results of the experiment show it possible to obtain effective compositions of CMMs with the maximum size of the grain of up to 10 mm that are better for laying and have higher deformation and strength characteristics by means of optimizing the content of the organic binder and components of the mineral part.

References

1.Barinov E. N. Novye metody otsenki kachestva asfal'tobetonov [New methods of assessing the quality of asphalt concrete]. Leningrad, Leningradskiy inzhenerno-stroitel'nyy in-t Publ., 1989. 55 p.

2.Gorelyshev N. V. Asfal'tobeton i drugie bitumomineral'nye materialy [Asphalt and other materials bitumomineraljnykh]. Moscow, Mozhaysk-Terra Publ., 1995. 176 p.

3.Gorelysheva L. A., Shtromberg A. A. Otsenka ustalostnoy dolgovechnosti asfal'tobetonnykh pokrytiy [Evaluation of fatigue life of asphalt concrete pavements]. Nauka i tekhnika v dorozhnoy otrasli, 2009, no. 1, pp. 25—26.

4.Zolotarev V. A. [Bitumens modified with polymers of the type SBS: Features of composition, structure and properties]. Trudy Mezhdunar. nauch.-tekhn. konf. «Problemy povysheniya kachestva i resursosberezheniya v dorozhnoy otrasli» [Proc. of International scientific-technical conference "Problems of quality improvement and resource saving in the road sector"]. Kharkov, KhNADU Publ., 2003. 17 p.

5.Zolotarev V. A., Bratchun V. I. [Modified bituminous binders, special bitumens with additives in road construction]. Vsemirnaya dorozhnaya assotsiatsiya. Tekhnicheskiy komitet «Nezhestkie dorogi» (s8) [The world road Association [The technical Committee is "flexible roads" (s8)]. Kharkov, KhNADU Publ., 2003. 229 p.

48

Issue № 3 (35), 2017

ISSN 2542-0526

6.Iliopolov S. K., Seleznev M. G., Uglova E. V. Dinamika dorozhnykh konstruktsiy [Dynamics of road constructions]. Rostov-on-don, 2002. 258 p.

7.Zolotarev V. A. et al., Zolotarev V. A., Kosmina A. V. (eds.). Ispytaniya dorozhno-stroitel'nykh materialov [Testing of road construction materials]. Kharkov, KhNADU Publ., 2012. 368 p.

8.Kalgin Yu. I. Dorozhnye bitumomineral'nye materialy na osnove modifitsirovannykh bitumov [Road bitumomineraljnykh materials based on modified bitumen]. Voronezh, Izd-vo Voronezh. gos. un-ta, 2006. 272 p.

9.Kalgin Yu. I., Strokin A. S., Mironchuk S. A. Otsenka ustoychivosti shchebenochno-mastichnogo asfal'tobetona s primeneniem polimernoy adgezionnoy dobavki k nakopleniyu ostatochnykh deformatsiy [Evaluation of resistance of stone mastic asphalt using polymer adhesive additives to the accumulation of residual strain]. Nauchnyy vestnik Voronezhskogo GASU. Stroitel'stvo i arkhitektura, 2015, no. 4 (14), pp. 107—115.

10.Kalgin Yu. I., Strokin A. S., Tyukov E. B. Perspektivnye tekhnologii stroitel'stva i remonta dorozhnykh pokrytiy s primeneniem modifitsirovannykh bitumov [Perspective technologies of construction and repair of road surfaces with the use of modified bitumen]. Voronezh, OAO «Voronezhskaya oblastnaya tipografiya», 2014. 224 p.

11.Kolbanovskaya A. S., Gokhman L. M., Davydova K. I. Regulirovanie protsessov strukturoobrazovaniya neftyanykh bitumov dobavkami divinil-stirol'nogo termoelastoplasta [Regulation of structure formation processes of bitumen additives butadiene-styrene thermoplastic elastomer]. Kolloidnyy zhurnal, vol. 34, no. 4, 1972, pp. 6—17.

12.Iliopolov S. K. e.a. Organicheskie vyazhushchie dlya dorozhnogo stroitel'stva [Organic binders for road construction]. Rostov-on-don, 2003. 428 p.

13.Rudenskiy A. V., Kalgin Yu. I. Dorozhnye asfal'tobetonnye pokrytiya na modifitsirovannykh bitumakh [Road asphalt coatings modified bitumen]. Voronezh, 2009. 143 p.

14.Bratchun V. I. et al. Fiziko-khimicheskaya mekhanika stroitel'nykh materialov [Physico-chemical mechanics of construction materials]. Donetsk, Noulindzh Publ., 2013. 338 p.

15.Carswel J., Noglia O. Etude des essais de fluage repetes comme method predictive de la resistance a l’ornierage des enrobes. RGRA, 2003, no. 817, pp. 55—59.

16.Chaussees a longue duree de vie et cas de reussite. Rapport du Comite Technique 4.3 sur Chaussees Routieres AIPCR, 2007. 42 p.

17.Hardzynski F., Such Ch. Modelisation du comportement rheologique des bitumes polymers. Le modеl

autocoherant. Bull. des Labo P. et Ch., 1998, no. 214, pp. 3—18.

18. Heukelom W. Une mеthode amеliorеe de caracterisation des bitumen par leurs propriеtеs mеcaniques / W. Heukelom. Bull. Liaison Labo. P. et Ch., 1975, no. 76, pp. 55—64.

19.Jolivet J., Malot M., Ramond G., Pastor M. Contribution des mesures rheologiques sur liants a la prevision l’ornierage en laboratoire. Bull. Liaison Labo. P. et Ch., 1994, no. 194, pp. 3—10.

20.Molenaar J. M. M., Hagos E. T., Van De Ven M. F. C. An investigation into the specification of rheological properties of polymer modified bitumen. Proc. 3rd Eurasphalt & Eurobitume Congress. 12—14 may 2004. Vienna, 2004, pp. 2080—2091.

21.Olard F., Chabert D. Developpement de l’essai de fatigue sur liants et mastics bitumineux. RGRA, 2008, no. 865. — P. 69—74.

22.Xue Y., Hou H., Zhu Sh., Zha J. Utilization of municipal solid waste incineration ash in stone mastic asphalt mixture: Pavement performance and environmental impact. Construction and Building Materials, 2009, vol. 23, iss. 2, pp. 989—996.

49

Russian Journal of Building Construction and Architecture

ENVIRONMENTAL SAFETY OF CONSTRUCTION

AND MUNICIPAL SERVICES

UDC543.183

G. V. Slavinskaya1, O. V. Kurenkova2

THE INFLUENCE OF REACTION MEDIUM

ON THE EFFECTIVENESS OF SORPTIVE WATER PURIFICATION FROM NATURAL AND SYNTHETIC SURFACTANTS ANIONITAMI

Voronezh State Technical University

Russia, Voronezh, tel.: (473)249-89-70, e-mail: slavgv@mail.ru 1D. Sc. in Chemistry, Prof.

Cadet School (Engineering School) of the Air Force

«Military Air Academy Named after N. E. Zhukovsky and Yu. A. Gagarin» Russia, Voronezh, e-mail: vaiu@mail.ru

2PhD in Chemistry, Teacher of Chemistry

Statement of the problem. Natural and synthetic surface-active substances (SAS) is limited not only for drinking but also in water for many productions, including those for use in concrete technology works. These impurities are removed based on anionits. To improve the quality of water and reduce the amount of wastewater for a long period of work filters, one must create the optimal conditions for the process.

Results. The influence of some parameters on the effectiveness of sorptive water purification of anionic surfactant-fulvic acid (FC) natural waters and nekal was studied. Anion exchangers are used in a different polymer matrix in a different ionic form having functional groups varying in their ionization capacity in a wide range of pH values.

Conclusions. For the first time, it has been shown that the highest removal efficiency of surfactants is achieved in the pH range 2—5 because of an increase in the rate constants of sorption coefficients and their diffusion in the matrix of the anion. This is due to the optimal combination of surfactants and ionization degree of functional groups of anion. Based on the identified patterns there are some recommendations on the use of anion-sorbents in water purification technology of surfactants.

Keywords: natural water sorption pH, surfactant, nekal, fulvic acids, anion exchangers.

Introduction

The number of stages of water purification and their sequences are determined by water quality standards and composition of impurities in raw water. E.g., the Sanitary Norms and Standards for drinking water [16] restrict not only the content of mineral substances (no more than

© Slavinskaya G. V., Кurenkova О. V., 2017

50

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]