Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2937

.pdf
Скачиваний:
1
Добавлен:
15.11.2022
Размер:
2.64 Mб
Скачать

Латуни. Двойные сплавы, состоящие из меди и цинка, и многокомпонентные (ГОСТ 102077Е), имеющие в своем составе также алюминий, железо, марганец, свинец, никель и другие добавки, которые изменяют механические и физические свойства, называются латунями. Они обладают хорошими механическими свойствами, коррозионной стойкостью. Стоимость латуни превышает стоимость качественной стали 45 примерно в 5-6 раз.

Бронзы. Различают бронзы оловянистые (медные сплавы, в которых основным легирующим компонентом является олово) и безоловянистые (двойные или многокомпонентные медные сплавы, содержащие в качестве легирующих элементов алюминий, никель, кремний и пр.). Оловянистые бронзы (ГОСТ 613-79) обладают высокими антифрикционными и литейными свойствами, а также высокой коррозийной стойкостью. Применяют их в качестве антифрикционных материалов, для изготовления арматуры и т.п. Бронзы (ГОСТ 5017-74) применяют для вкладышей подшипников скольжения, венцов червячных колес, упругих элементов приборов, токопроводящих деталей. Стоимость бронзы превышает стоимость стали 45 в среднем в 10 раз.

Алюминиевые сплавы. Эти сплавы делятся на литейные (АЛ) (ГОСТ 2685-75), имеющие хорошие литейные свойства, и деформируемые (АД) (ГОСТ 4784-74), хорошо обрабатывающиеся давлением. Алюминий-магниевые и алюминий-медные сплавы (дуралюмины) применяются для изготовления нагруженных деталей (корпусов, оснований, шасси, заклепок, трубопроводов, емкостей и т.д.), алюминий-кремнистые литейные сплавы (силумины) - для изготовления средненагруженных корпусных деталей и деталей сложной конфигурации. Стоимость алюминиевых сплавов превышает стоимость стали в среднем в четыре раза.

Баббиты. Для заливки вкладышей подшипников применяются легкоплавкие антифрикционные сплавы (баббиты) на оловянной или свинцовой основе (ГОСТ 1320-74). Они имеют по сравнению с другими антифрикционными материалами самый малый коэффициент трения, хорошо прирабатываются, дают возможность работать при высоких скоростях и давлениях. Стоимость баббитов, в несколько раз превышающая стоимость бронз, ограничивает их применений.

Биметаллы. Кроме перечисленных металлов и сплавов, распространение получили биметаллы и полиметаллы, состоящие соответственно из двух или несколько различных по химическому составу металлов или сплавов, не образующих между собой сплава или химического соединения. Биметаллы - соединения из черных металлов с дефицитными металлами и сплавами - получают различными технологическими способами: отливкой, пайкой, сваркой, металлическим покрытием, плакированием, прокаткой и пр. применение таких биметаллов существенно снижает стоимость деталей.

Соединением металлов с различными коэффициентами линейного расширения получают биметаллические пружины, широко используемые для температурной компенсации деформаций и т.п.

Композиционные материалы. Объемные сочетания химически разнородных компонентов (упрочнителей и матриц) с волокнистой или слоистой структурой называют композиционными материалами. Применение армирующих волокон (стеклянных, углеродных и др.) в сочетании с металлическими или неметаллическими матрицами позволяет получить материалы с особыми регулируемыми свойствами (высокими сопротивлением усталости, вибропрочностью и др.).

Пластмассы. Пластические массы представляют собой материалы, полученные на основе природных или синтетических полимеров. Пластмассы, допускающие формирование при неоднократном нагреве по давлением, называют термопластами [винилпласт (ГОСТ 9639-71) и др.]; пластмассы, формирующиеся при нагреве и давлении только в определенной стадии

71

производства и затем теряющие эту способность, называются реактопластами [текстолит (ГОСТ 5-72) и др.].

Обычно пластмассы состоят из полимеров (связующей основы) и наполнителя. Полимеры существенно влияют на их механическую прочность, диэлектрические и антифрикционные свойства, водостойкость, химическую стойкость. Наполнители могут иметь органическое (древесная мука, ткани) и неорганическое (асбестовая бумага, стеклянная ткань) происхождение. Наполнители существенно влияют на механическую прочность деталей, как бы составляя ее механический каркас. Пластмассы по прочностным характеристикам могут приближаться к металлам, а по коррозионной стойкости превосходят их, имеют меньший вес, устойчивы к действию повышенных и низких температур, обладают высокой стойкостью к действию химических реагентов. Применение их взамен металлов в ряде случаев снижает стоимость изделий.

Резина. Свойства резины зависят от ее состава, технологии изготовления. Различают резины из натурального и синтетического каучука, саженаполненные и бессажные, формованные и т.д. В зависимости от назначения они подразделяются на мягкие - для изготовления пневматических шин, жесткие - для изготовления электротехнических изделий (эбонит), пористые - для изготовления амортизаторов. Армирование резины тканями повышает ее механические свойства.

Смазочные материалы. Работоспособность механизмов существенно зависит от правильного выбора смазочных материалов. Пригодность масел определяется по их вязкости и маслянистости. Под вязкостью, или внутренним трением смазки, понимают свойство одного слоя жидкости сопротивляться сдвигу по отношению к другому. Оценка вязкости производится в абсолютных (динамическая вязкость) и относительных (кинематическая вязкость) единицах.

Динамическая вязкость измеряется в паскаль-секундах (Па·с). Кинематическая вязкость, представляющая собой отношение динамической вязкости к плотности масла, измеряется в стоксах (10-4 м2/с) или единицей, в 100 раз меньшей, сантистоксом (сСт).

Наиболее распространенными смазочными материалами являются жидкие и пластичные смазки. К жидким смазкам относятся минеральные (нефтяные), растительные и животные масла. Для смазки механизма общего назначения применяются минеральные масла индустриальные (ГОСТ 20799-75), цилиндровое, сепараторное и др.с вязкостью 4-60 сСт при температуре 50оС. Из растительных масел применяют льняное и касторовое.

Пластичные смазки (мази) представляют собой смеси загущенных жидких минеральных масел с маслами животного и растительного происхождения. в качестве загустителей применяют кальциевые и натриевые мыла или углеводороды (парафин). Основные кальциевые смазки - консталин, натриевые - солидол (ГОСТ 4366-76).

При работе механизмов и приборов в химически активных средах, вакууме, при высоких температурах применяют твердые смазки (дисульфид молибдена, графит, тальк и др.), которые образуют на поверхности твердую адсорбированную смазывающую пленку толщиной 1-6 мкм.

7.3.Точность изготовления деталей механизмов и приборов

Взаимозаменяемость. Свойство независимо изготовленных деталей и сборочных единиц машин и приборов обеспечивать возможность беспригоночной сборки (или замены при ремонте) сопрягаемых деталей в сборочную единицу, а сборочных единиц - в изделие при соблюдении предъявляемых к ним технических требований называется взаимозаменяемостью.

Различают полную и неполную взаимозаменяемость. Полная взаимозаменяемость предполагает правильное соединение всех сопрягаемых деталей, поступивших на сборку, что

72

обеспечивается высокой точностью их изготовления. При неполной взаимозаменяемости обеспечивается правильное соединение только части деталей и узлов, изготовляемых с меньшей точностью. Для сборки в таких случаях используется групповой подбор деталей (селективная сборка), применяются компенсаторы и другие дополнительные технологические средства.

Сведения о размерах. Геометрические параметры деталей количественно оценивают посредством размеров. Размер, принимаемый в процессе проектирования (на основании, например, прочностных расчетов или по конструктивным соображениям с округлением до ближайшего из ряда по ГОСТ 6636-69 "Нормальные линейные размеры") и проставляемый на чертежах детали или соединения, называется номинальным.

Рис. 7.1. Предельные размеры отверстия и вала, определяющие поля допусков

При изготовлении деталей полное соответствие между указанными на чертежах и действительными размерами практически недостижимо. Большое число факторов, влияющих на точность обработки, неизбежно приводит к погрешностям в размерах и форме детали.

Исходя из функционального назначения деталей и характера их сопряжения можно назначить наибольший и наименьший предельные размеры деталей, при которых будет обеспечена правильная сборка и нормальная работа узла и механизма. Экономически

73

целесообразные предельные отклонения размеров деталей определяются единой системой допусков и посадок. (СТ СЭВ 145-75, СТ СЭВ 144-75).

Допуски. Разность между наибольшим и наименьшим предельными размерами называется допуском. На рис. 7.1 показаны цилиндрические отверстия и валы с предельными и номинальными величинами диаметров. Если левые образующие цилиндрических поверхностей совместить, то правые их образующие ограничат зону, называемую полем допуска (IT). Правая граница поля допуска соответствует наибольшему предельному размеру, а левая - наименьшему.

Рис. 7.2. Схема расположения полей допусков

Положение поля допуска относительно номинального размера определяется верхним и нижним предельными отклонениями. верхним отклонением (отверстия ES и вала es) называется алгебраическая разность между наибольшим предельным размером и номинальным, нижним (отверстия EI и вала ei) - разность между наименьшим предельным размером и номинальным. При горизонтальном расположении нулевой линии положительные отклонения откладывают вверх от нее, а отрицательные отклонения - вниз.

Величины верхнего и нижнего предельных отклонений на чертежах указываются в миллиметрах мелкими цифрами правее номинального размера, например 50 00,,018008 . Отклонения,

74

равные нулю, на чертежах не проставляются. Оба предельных отклонения могут быть положительными 20 0,0290,008 или отрицательными 15 00,02,07 , если оба предельных размера больше

или меньше номинального.

Расположение поля допуска относительно нулевой линии принято обозначать буквой (или двумя буквами) латинского алфавита - прописной для отверстий и строчной для валов (рис. 7.2).

Квалитеты точности. Чем больше величина допуска на размер, тем меньше требования к точности детали, тем проще и дешевле ее изготовление. Однако большие детали труднее изготовить, чем малые с одинаковыми отклонениями от номинальных размеров. В связи с этим величина допуска IT = ai может быть выражена в единицах допуска i, зависящих от среднего

значения стандартного интервала размеров D (единица допуска i 0,453D 0,001D ; D, мм; i, мкм). В зависимости от числа а единиц допуска i в допуске IT стандартом установлено 19 следующих квалитетов точности, написанных в порядке понижения точности: 01, 0, 1, 2, 3, ..., 17. Квалитеты 01, ..., 4 предназначены для концевых мер длины, калибров и т.д., в квалитетах 5, ..., 13 даются допуски для сопрягаемых размеров деталей, а в квалитетах 14, ..., 17 - для несопрягаемых размеров деталей.

Так как величина поля допуска определяется квалитетом, а его положение относительно нулевой линии обозначено буквой, то предельные отклонения линейных размеров могут быть указаны на чертежах не только числовыми значениями отклонений, но и условными обозначениями полей допусков. При этом за числом, указывающим размер, следует условное

обозначение поля допуска, состоящее из буквы и цифры, обозначающей квалитет, например 20Н7, 12е8, или с указанием в скобках численных значений предельных отклонений: 20Н7(+0,018),

12е8( 0,0320,059 ) .

Посадки. При сборке двух сопрягаемых деталей различают охватывающую и охватываемую поверхности. И хотя не все такие поверхности являются цилиндрическими, условно принято называть охватывающую поверхность отверстием, а охватываемую - валом.

По разности между размерами отверстия и вала можно судить о свободе относительного перемещения детали либо о прочности их неподвижного соединения. Характер соединения деталей называется посадкой. В зависимости от размеров сопрягаемых деталей в соединении может возникнуть зазор или натяг. Если размер отверстия больше размера вала, то появляется зазор - положительная разность между размерами отверстия и вала. Если размер отверстия до сборки меньше размера вала, то разность эта будет отрицательная, т.е. имеет место натяг.

Все посадки подразделяются на три группы: посадки с зазором, характеризуемые наличием зазора; посадки с натягом, обеспечивающие натяг в соединении, и переходные, при которых возможно получение в соединении как натягов, так и зазоров.

Системы образования посадок. Различают две системы образования посадок - систему отверстия и систему вала.

Системой отверстия называют совокупность посадок, в которых предельные отклонения данного размера отверстий (в данном квалитете) одинаковы для всех посадок, а различные посадки достигаются путем изменения предельных отклонений размеров валов. Такое отверстие называется основным, и поле допуска его обозначается буквой Н, которая ставится после номинального размера детали, например 25 Н8. Нижнее отклонение основного отверстия равно нулю, т.е. поле допуска располагается "в тело" детали. Если показывается размер соединяемых элементов двух деталей, то в обозначение посадки в системе отверстия входят номинальный размер и обозначения полей допусков для каждого элемента, начиная с отверстия, например 40 Н7g6 (или 40 Н7-g6, или 40Н7/g6).

75

Рис. 7.3. Схема образования посадок в системах отверстия и вала

Системой вала называют совокупность посадок, в которых предельные отклонения валов одинаковы (для данного интервала размеров и квалитета точности), а различные посадки достигаются путем изменения предельных отклонений отверстий. Поле допуска основного вала располагается "в тело" вала, т.е. номинальный размер соответствует наибольшему размеру (верхнее отклонение равно нулю). В системе вала основной деталью является вал и поле допуска его обозначается буквой h, которая ставится после номинального размера детали, например 30h6. В обозначение посадки входит номинальный размер, общий для обоих соединяемых элементов (отверстия и вала), за которым следуют обозначения полей допусков для каждого элемента, например 10F7/h6 (10F7 - h6,10F7/h6). Схемы расположения полей допусков при системах отверстия и вала показаны на рис. 7.3. Обе системы являются равноправными. Однако часто система отверстия оказывается предпочтительнее из-за сокращения используемого ассортимента режущего инструмента для обработки отверстий.

Выбор посадок. Для получения подвижных соединений деталей назначаются посадки с зазорами (на рис. 7.3 поля 1) в системе основного отверстия или основного вала (используются поля допусков валов от а до h и отверстий от А до Н). При требовании высокой точности, хорошего центрирования с вероятностью получения минимальных зазоров применяются посадки H7/h5, H7/h6, H8/h6. Для получения точного вращения с небольшим числом оборотов применяется соединение деталей по посадкам H6/g5, H7/g6, H7/g7. Посадка H9/f9 применяется для соединения деталей невысокой точности со свободным продольным перемещением или вращением в опорах скольжения. Получение свободного вращения неответственных деталей достигается применением посадки H11/d11.

Переходные посадки (на рис. 7.3 поля 2) предназначаются для получения неподвижных соединений, подлежащих периодической разборке и сборке. Они могут быть получены при использовании полей допусков валов j, js , k, m, n и отверстий J, Js , K, M, N. Переходные посадки обеспечивают довольно высокую степень центрирования соединяемых деталей. В

76

соединениях для предотвращения относительного движения деталей необходимо предусмотреть фиксирующие устройства - штифты, шпонки и др.

Наиболее широко применяют посадки H7/k6, K7/h6, используемые при соединении валов и ступиц насаживаемых на них деталей (зубчатых колес, шкивов и др.), а также посадки H7/m6, используемые в штифтовых соединениях.

Для получения неразъемных соединений применяют неподвижные посадки (на рис. 7.3 поля 3), получаемые при использовании полей допусков валов от p до zc и отверстий от P до ZC. За счет натяга эти посадки позволяют обеспечить неподвижность соединений без применения дополнительных крепежных устройств.

При назначении полей допусков разрешается выбор их из разных квалитетов: для отверстий, которые обрабатывать сложнее, принимается больший допуск, чем допуск вала (отличие не более чем на два квалитета). Комбинированные посадки образуются и при сочетании допусков вала и отверстия, взятых из разных систем образования посадок (системы отверстия и системы вала), например 12 F8/e8, 10 G6/g6.

Рис. 7.4. Отклонения формы деталей, имеющих плоские сопрягаемые поверхности

Точность геометрической формы. К отклонениям формы деталей по ГОСТ 24642-81, имеющих плоские сопрягаемые поверхности, относятся непрямолинейность и неплоскостность (рис. 7.4). Под непрямолинейностью понимается отклонение от прямой линии профиля сечения поверхности плоскостью, нормальной к ней, в заданном направлении. Неплоскостность - отклонение от прямолинейности в любом направлении по поверхности, например выпуклость, вогнутость.

77

Рис. 7.5. Отклонения формы цилиндрических поверхностей в поперечном сечении

Отклонения формы цилиндрических поверхностей возможны в поперечном и продольном сечениях. В поперечном сечении возможно отклонение контура поверхности от правильной окружности - некруглость, частыми видами которой являются огранка и овальность (рис. 7.5).

Рис. 7.6. Отклонения формы цилиндрических поверхностей в продольных сечениях

В продольном сечении цилиндрической поверхности наблюдаются отклонения от прямолинейных ее образующих: бочкообразность, вогнутость, изогнутость оси и отклонения от параллельности образующих - конусообразность (рис. 7.6). За величину отклонения формы цилиндрической поверхности принимается разность наибольшего и наименьшего диаметров. Предельные отклонения формы цилиндрических поверхностей ограничиваются полями допусков на диаметр.

78

а)

б)

в)

г)

д)

е)

ж)

з)

и)

79

к)

Рис. 7.7. Виды отклонений расположения поверхностей: а) - несимметричность; б) - непересечение осей; в) - смещение осей отверстия; г) - непараллельность оси отверстия

плоскости; д) - несоосность относительно общей оси; е) - неперпендикулярность плоскостей; ж) - неперпендикулярность осей; з) - неперпендикулярность оси и плоскости; и) - торцевое биение; к) - радиальное биение

Точность взаимного расположения поверхностей. К отклонениям взаимного расположения по ГОСТ 24642-81 относятся непараллельность, неперпендикулярность (для плоскостей); несоосность, радиальное и торцовое биение (для цилиндрических поверхностей); перекос осей и отклонение от правильного расположения пересекающихся и скрещивающихся осей и др. (рис. 7.7)

Обозначение на чертежах. Предельные отклонения формы и расположения поверхностей указывают на чертежах по СТ СЭВ 368-76 в виде условных обозначений (знаков. символов) и текстовых записей (табл. 7.1). Знак и величину отклонения вписывают в прямоугольную рамку, разделенную на две или три части. В первой части (слева) указывают знак отклонения (рис. 7.8), во второй - числовую величину предельного отклонения в миллиметрах, в третьей - буквенное обозначение базы или другой поверхности. Базы обозначают зачерненным равносторонним треугольником (или прописной буквой). Направление отрезка линии со стрелкой должно соответствовать направлению линии измерения отклонения (рис. 7.8).

Рис. 7.8. Обозначение на чертежах предельных отклонений формы.

80

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]