Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лабораторная работа по физике № 3.doc
Скачиваний:
41
Добавлен:
09.02.2015
Размер:
285.7 Кб
Скачать

9

Московский государственный технический

университет им. Н.Э. Баумана.

Калужский филиал.

Т.С. Китаева, р.В. Нехаенко «Определение коэффициента поверхностного натяжения жидкости»

Методические указания к выполнению лабораторной работы № 3

по курсу молекулярной физики.

Калуга 2007 г.

Целью настоящей работы является определение коэффициента поверхностного натяжения воды по методу отрыва кольца.

1. Теоретическая часть.

Жидкость является агрегатным состоянием вещества, промежуточным между газообразным и твёрдым, поэтому она обладает свойствами как газообразных, так и твёрдых веществ.

Каждая молекула жидкости в течение некоторого времени колеблется около определённого положения равновесия, после чего скачком переходит в новое положение, отстоящее от исходного на расстоянии порядка межатомного.

На молекулу жидкости со стороны окружающих её молекул действуют силы взаимного притяжения, которые с расстоянием быстро убывают. Следовательно, начиная с некоторого минимального расстояния силами притяжения между молекулами можно пренебречь. Это расстояние (порядка ) называется радиусом молекулярного действия , а сфера радиуса - сферой молекулярного действия.

Выделим внутри жидкости какую-либо молекулу «А» и проведём вокруг неё сферу радиуса (Рис. 1.).

Силы, с которыми молекулы, находящиеся внутри сферы, действуют на молекулу «А», направлены в разные стороны, и в среднем скомпенсированы.

Рис. 1. Положение молекул внутри жидкости и вблизи её поверхности («А» и «В»).

Поэтому результирующая сила, действующая на молекулу внутри жидкости со стороны других молекул, равна нулю.

Если молекула «В» расположена от поверхности жидкости на расстоянии, меньшем чем , то сфера молекулярного действия расположена частично внутри жидкости, частично над жидкостью (в газе), при этом концентрация молекул газа мала по сравнению с их концентрацией в жидкости.

В силу этого равнодействующая сила , приложенная к каждой молекуле поверхностного слоя, не равна нулю и направлена внутрь жидкости.

Для перемещения молекулы из глубины жидкости в поверхностный слой необходимо затратить работу, которая совершается силами, действующими на молекулу в поверхностном слое и отрицательна по знаку. В результате кинетическая энергия молекулы уменьшается, превращаясь в потенциальную энергию. То есть, молекулы поверхностного слоя жидкости обладают большей потенциальной энергией, чем молекулы внутри жидкости. Эта дополнительная (избыточная) потенциальная энергия молекул поверхностного слоя жидкости называется поверхностной энергией . Она пропорциональна площади слоя :

, (1)

где - коэффициент поверхностного натяжения.

Откуда

(2)

Условием устойчивого равновесия жидкости является минимум поверхностной энергии. Это означает, что жидкость при отсутствии внешних сил будет принимать такую форму, чтобы при заданном объёме она имела наименьшую площадь поверхности (форму шара), то есть жидкость стремится сократить площадь свободной поверхности. В этом случае поверхностный слой жидкости можно уподобить растянутой упругой плёнке, в которой действуют силы поверхностного натяжения. Эти силы направлены по касательной к поверхности жидкости и перпендикулярны участку контура, на который они действуют.

Рассмотрим поверхность жидкости, ограниченную замкнутым контуром (Рис. 2.). Под действием сил поверхностного натяжения свободная поверхность жидкости сократилась, и рассматриваемый контур переместился из положения (1) в положение (2). (Силы поверхностного натяжения направлены по касательной к поверхности жидкости и перпендикулярны участку контура, на который они действуют.)

Силы, действующие со стороны выделенного участка на граничащие с ним участки, совершают работу:

,

где - сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости.

Тогда

(3)

Эта работа (3) совершается за счёт уменьшения поверхностной энергии:

(4)

Рис. 2. Поверхность жидкости, ограниченная замкнутым контуром .

Сравнивая выражения (1), (3), (4), имеем:

(5)

То есть коэффициент поверхностного натяжения равен силе поверхностного натяжения, действующей на единицу длины контура, ограничивающего поверхность.

Единица измерения коэффициента поверхностного натяжения в СИ - ньютон на метр, или джоуль на квадратный метр, .

Большинство жидкостей при температуре имеют коэффициент поверхностного натяжения порядка . Так для воды эта величина равна .

Коэффициент поверхностного натяжения с повышением температуры уменьшается, так как увеличивается среднее расстояние между молекулами жидкости.

Кроме того, существенным образом зависит от примесей, имеющихся в жидкости.

Вещества, ослабляющие поверхностное натяжение жидкости, называются поверхностно-активными. Например, по отношению к воде к ним относятся спирты, мыло, нефть, и др.

Другие вещества (сахар, соль) увеличивают поверхностное натяжение жидкости благодаря тому, что их молекулы взаимодействуют с молекулами жидкости сильнее, чем молекулы жидкости между собой.