Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3G Evolution. HSPA and LTE for Mobile Broadband

.pdf
Скачиваний:
6
Добавлен:
15.11.2022
Размер:
4.07 Mб
Скачать

List of Acronyms

3GPP

Third Generation Partnership Project

AAS

Adaptive Antenna System

ACK

Acknowledgement (in ARQ protocols)

ACK-CH

Acknowledgement Channel (for WiMAX)

ACLR

Adjacent Channel Leakage Ratio

ACTS

Advanced Communications Technology and Services

AGW

Access Gateway (in LTE/SAE)

AM

Acknowledged Mode (RLC configuration)

AMC

Adaptive Modulation and Coding

AMPS

Advanced Mobile Phone System

AMR-WB

Adaptive MultiRate-WideBand

AP

Access Point

ARIB

Association of Radio Industries and Businesses

ARQ

Automatic Repeat-reQuest

ATDMA

Advanced Time Division Mobile Access

ATIS

Alliance for Telecommunications Industry Solutions

AWGN

Additive White Gaussian Noise

BCCH

Broadcast Control Channel

BCH

Broadcast Channel

BE

Best Effort Service

BER

Bit-Error Rate

BLER

Block-Error Rate

BM-SC

Broadcast/Multicast Service Center

BPSK

Binary Phase-Shift Keying

BS

Base Station

BSC

Base Station Controller

BTC

Block Turbo Code

BTS

Base Transceiver Station

CAZAC

Constant Amplitude Zero Auto-Correlation

CC

Convolutional Code

CCSA

China Communications Standards Association

CDF

Cumulative Density Function

CDM

Code-Division Multiplex

CDMA

Code Division Multiple Access

CEPT

European Conference of Postal and

 

Telecommunications Administrations

CN

Core Network

xxix

xxx

List of Acronyms

CODIT

Code-Division Testbed

CP

Cyclic Prefix

CPC

Continuous Packet Connectivity

CPICH

Common Pilot Channel

CQI

Channel Quality Indicator

CQICH

Channel Quality Indication Channel (for WiMAX)

CRC

Cyclic Redundancy Check

CS

Circuit Switched

CTC

Convolutional Turbo Code

DCCH

Dedicated Control Channel

DCH

Dedicated Channel

DFE

Decision Feedback Equalization

DFT

Discrete Fourier Transform

DFTS-OFDM

DFT-spread OFDM, see also SC-FDMA

DL

Downlink

DL-SCH

Downlink Shared Channel

DPCCH

Dedicated Physical Control Channel

DPCH

Dedicated Physical Channel

DPDCH

Dedicated Physical Data Channel

DRX

Discontinuous Reception

DTCH

Dedicated Traffic Channel

DTX

Discontinuous Transmission

D-TxAA

Dual Transmit-Diversity Adaptive Array

E-AGCH

E-DCH Absolute Grant Channel

E-DCH

Enhanced Dedicated Channel

EDGE

Enhanced Data rates for GSM Evolution and

 

Enhanced Data rates for Global Evolution

E-DPCCH

E-DCH Dedicated Physical Control Channel

E-DPDCH

E-DCH Dedicated Physical Data Channel

E-HICH

E-DCH Hybrid Indicator Channel

eNodeB

E-UTRAN NodeB

EPC

Evolved Packet Core

E-RGCH

E-DCH Relative Grant Channel

ErtPS

Extended Real-Time Polling Service

E-TFC

E-DCH Transport Format Combination

E-TFCI

E-DCH Transport Format Combination Index

ETSI

European Telecommunications Standards Institute

E-UTRA

Evolved UTRA

E-UTRAN

Evolved UTRAN

EV-DO

Evolution-Data Optimized (of CDMA2000 1x)

EV-DV

Evolution-Data and Voice (of CDMA2000 1x)

FACH

Forward Access Channel

List of Acronyms

xxxi

FBSS

Fast Base Station Switching

FCC

Federal Communications Commission

FCH

Frame Control Header (for WiMAX)

FDD

Frequency Division Duplex

FDM

Frequency-Division Multiplex

FDMA

Frequency-Division Multiple Access

F-DPCH

Fractional DPCH

FEC

Forward Error Correction

FFT

Fast Fourier Transform

FIR

Finite Impulse Response

F-OSICH

Forward link Other Sector Indication Channel

 

(for IEEE 802.20)

FPLMTS

Future Public Land Mobile Telecommunications Systems

FRAMES

Future Radio Wideband Multiple Access Systems

FTP

File Transfer Protocol

FUSC

Fully Used Subcarriers (for WiMAX)

GERAN

GSM EDGE RAN

GGSN

Gateway GPRS Support Node

GPRS

General Packet Radio Services

GPS

Global Positioning System

G-RAKE

Generalized RAKE

GSM

Global System for Mobile communications

HARQ

Hybrid ARQ

H-FDD

Half-duplex FDD

HHO

Hard Handover

HLR

Home Location Register

HSDPA

High-Speed Downlink Packet Access

HS-DPCCH

High-Speed Dedicated Physical Control Channel

HS-DSCH

High-Speed Downlink Shared Channel

HSPA

High-Speed Packet Access

HS-PDSCH

High-Speed Physical Downlink Shared Channel

HSS

Home Subscriber Server

HS-SCCH

High-Speed Shared Control Channel

HSUPA

High-Speed Uplink Packet Access

IDFT

Inverse DFT

IEEE

Institute of Electrical and Electronics Engineers

IFDMA

Interleaved FDMA

IFFT

Inverse FFT

IMS

IP Multimedia Subsystem

IMT-2000

International Mobile Telecommunications 2000

IP

Internet Protocol

IPv4

IP version 4

xxxii

List of Acronyms

IPv6

IP version 6

IR

Incremental Redundancy

IRC

Interference Rejection Combining

ISDN

Integrated Services Digital Network

ITU

International Telecommunications Union

ITU-R

International Telecommunications Union-Radiocommunications

 

Sector

Iu

The interface used for communication between the RNC and

 

the core network.

Iub

The interface used for communication between the NodeB

 

and the RNC

Iur

The interface used for communication between different RNCs

J-TACS

Japanese Total Access Communication System

LAN

Local Area Network

LDPC

Low Density Parity Check Code

LMMSE

Linear Minimum Mean-Square Error

LTE

Long-Term Evolution

MAC

Medium Access Control

MAN

Metropolitan Area Network

MAP

Map message (for WiMAX)

MBFDD

Mobile Broadband FDD (for IEEE 802.20)

MBMS

Multimedia Broadcast/Multicast Service

MBS

Multicast and Broadcast Service

MBSFN

Multicast Broadcast Single Frequency Network

MBTDD

Mobile Broadband TDD (for IEEE 802.20)

MBWA

Mobile Broadband Wireless Access

MCCH

MBMS Control Channel

MCE

MBMS Coordination Entity

MCH

Multicast Channel

MCS

Modulation and Coding Scheme

MDHO

Macro-Diversity Handover

MICH

MBMS Indicator Channel

MIMO

Multiple-Input Multiple-Output

ML

Maximum Likelihood

MLD

Maximum Likelihood Detection

MMS

Multimedia Messaging Service

MMSE

Minimum Mean Square Error

MRC

Maximum Ratio Combining

MSC

Mobile Switching Center

MSCH

MBMS Scheduling Channel

MTCH

MBMS Traffic Channel

NAK

Negative Acknowledgement (in ARQ protocols)

List of Acronyms

xxxiii

NMT

Nordisk MobilTelefon (Nordic Mobile Telephony)

NodeB

NodeB, a logical node handling transmission/reception in

 

multiple cells. Commonly, but not necessarily, corresponding

 

to a base station.

nrTPS

Non-Real-Time Polling Service

OFDM

Orthogonal Frequency-Division Multiplexing

OFDMA

Orthogonal Frequency-Division Multiple Access

OOK

On–off keying

OVSF

Orthogonal Variable Spreading Factor

PAN

Personal Area Network

PAPR

Peak-to-Average Power Ratio

PAR

Peak-to-Average Ratio (same as PAPR)

PARC

Per-Antenna Rate Control

PCCH

Paging Control Channel

PCG

Project Coordination Group (in 3GPP)

PCH

Paging Channel

PCI

Pre-coding Control Indication

PDC

Personal Digital Cellular

PDCCH

Physical Downlink Control Channel

PDCP

Packet-Data Convergence Protocol

PDSCH

Physical Downlink Shared Channel

PDU

Protocol Data Unit

PF

Proportional Fair (a type of scheduler)

PHY

Physical layer

PoC

Puch to Talk over Cellular

PS

Packet Switched

PSK

Phase Shift Keying

PSTN

Public Switched Telephone Network

PUSC

Partially Used Subcarriers (for WiMAX)

QAM

Quadrature Amplitude Modulation

QoS

Quality-of-Service

QPSK

Quadrature Phase-Shift Keying

RAB

Radio Access Bearer

RACE

Research and development in Advanced Communications

 

technologies in Europe

RAN

Radio Access Network

RB

Resource Block

RBS

Radio Base Station

RF

Radio Frequency

RLC

Radio Link Protocol

RNC

Radio Network Controller

RNTI

Radio-Network Temporary Identifier

xxxiv

List of Acronyms

ROHC

Robust Header Compression

RR

Round Robin (a type of scheduler)

RRC

Radio Resource Control

RRM

Radio Resource Management

RS

Reference Symbol

RSN

Retransmission Sequence Number

RSPC

IMT-2000 Radio Interface Specifications

RTP

Real Time Protocol

rtPS

Real-Time Polling Service

RTWP

Received Total Wideband Power

RV

Redundancy Version

S1

The interface between eNodeB and AGW.

SA

System Aspects

SAE

System Architecture Evolution

S-CCPCH

Secondary Common Control Physical Channel

SC-FDMA

Single-Carrier FDMA

SDMA

Spatial Division Multiple Access

SDO

Standards Developing Organisation

SDU

Service Data Unit

SF

Spreading Factor

SFBC

Space Frequency Block Coding

SFN

Single-Frequency Network or System Frame

 

Number (in 3GPP)

SFTD

Space Frequency Time Diversity

SGSN

Serving GPRS Support Node

SIC

Successive Interference Combining

SIM

Subscriber Identity Module

SINR

Signal-to-Interference-and-Noise Ratio

SIR

Signal-to-Interference Ratio

SMS

Short Message Service

SNR

Signal-to-Noise Ratio

SOHO

Soft Handover

SRNS

Serving Radio Network Subsystem

STBC

Space-Time Block Coding

STC

Space-Time Coding

STTD

Space-Time Transmit Diversity

TACS

Total Access Communication System

TCP

Transmission Control Protocol

TD-CDMA

Time Division-Code Division Multiple Access

TDD

Time Division Duplex

TDM

Time Division Multiplexing

TDMA

Time Division Multiple Access

List of Acronyms

xxxv

TD-SCDMA

Time Division-Synchronous Code Division

 

Multiple Access

TF

Transport Format

TFC

Transport Format Combination

TFCI

Transport Format Combination Index

TIA

Telecommunications Industry Association

TM

Transparent Mode (RLC configuration)

TR

Technical Report

TrCH

Transport Channel

TS

Technical Specification

TSG

Technical Specification Group

TSN

Transmission Sequence Number

TTA

Telecommunications Technology Association

TTC

Telecommunications Technology Committee

TTI

Transmission Time Interval

UE

User Equipment, the 3GPP name for the mobile terminal

UGS

Unsolicited Grant Service

UL

Uplink

UL-SCH

Uplink Shared Channel

UM

Unacknowledged Mode (RLC configuration)

UMTS

Universal Mobile Telecommunications System

USIM

UMTS SIM

US-TDMA

U.S. TDMA standard

UTRA

Universal Terrestrial Radio Access

UTRAN

Universal Terrestrial Radio Access Network

Uu

The interface used for communication between the

 

NodeB and the UE.

WAN

Wide Area Network

WARC

World Administrative Radio Congress

WCDMA

Wideband Code Division Multiple Access

WG

Working Group

WiMAX

Worldwide Interoperability for Microwave Access

WLAN

Wireless Local Area Network

VoIP

Voice-over-IP

WP8F

Working Party 8F

WRC

World Radiocommunication Conference

X2

The interface between eNodeBs.

ZC

Zadoff-Chu

ZF

Zero Forcing

ZTCC

Zero Tailed Convolutional Code

List of Figures

1.1

The standardization phases and iterative process. . . . . . . . . . . . . . . . . . . . . .

. 8

1.2

3GPP organization.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3

Releases of 3GPP specifications for UTRA. . . . . . . . . . . . . . . . . . . . . . . . . .

11

1.4

The definition of IMT-2000 in ITU-R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

1.5

Operating bands for UTRA FDD specified in 3GPP. . . . . . . . . . . . . . . . . . .

14

2.1

The terminal development has been rapid the past 20 years. . . . . . . . . . . .

18

2.2

The bit rate – delay service space that is important to cover

 

 

when designing a new cellular system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

2.3

One HSPA and LTE deployment strategy: upgrade to HSPA

 

 

Evolution, then deploy LTE as islands in the WCDMA/HSPA sea. . . . . .

27

3.1

Minimum required Eb/N0 at the receiver as a function of

 

 

bandwidth utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

3.2

Signal constellations for QPSK, 16QAM, and 64QAM. . . . . . . . . . . . . . . .

36

3.3

Distribution of instantaneous power for different modulation

 

 

schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

3.4

Multi-path propagation causing time dispersion and

 

 

radio-channel frequency selectivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

3.5

Extension to wider transmission bandwidth by means

 

 

of multi-carrier transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

3.6

Theoretical WCDMA spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Per-subcarrier pulse shape and spectrum for basic

OFDM transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 OFDM subcarrier spacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3 OFDM modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 OFDM time–frequency grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5 Basic principle of OFDM demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.6 OFDM modulation by means of IFFT processing. . . . . . . . . . . . . . . . . . . . . 50 4.7 OFDM demodulation by means of FFT processing.. . . . . . . . . . . . . . . . . . .51 4.8 Time dispersion and corresponding received-signal timing. . . . . . . . . . . . . 51 4.9 Cyclic-prefix insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10Frequency-domain model of OFDM transmission/reception.. . . . . . . . . . .54

4.11Frequency-domain model of OFDM transmission/reception

with ‘one-tap equalization’ at the receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xiii

xiv

List of Figures

4.12 Time-frequency grid with known reference symbols. . . . . . . . . . . . . . . . . . 55 4.13 Transmission of single wideband carrier and OFDM transmission

over a frequency-selective channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.14 Channel coding in combination with frequency-domain

interleaving to provide frequency diversity in case of OFDM transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.15 Subcarrier interference as a function of the normalized Doppler

spread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.16 Spectrum of a basic 5 MHz OFDM signal compared with

WCDMA spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.17 OFDM as a user-multiplexing/multiple-access scheme. . . . . . . . . . . . . . . . 62 4.18 Distributed user multiplexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.19 Uplink transmission-timing control.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.20 Broadcast scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.21 Broadcast vs. Unicast transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.22 Equivalence between simulcast transmission and

multi-path propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 General time-domain linear equalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2 Linear equalization implemented as a time-discrete FIR filter. . . . . . . . . . 69 5.3 Frequency-domain linear equalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4 Overlap-and-discard processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.5 Cyclic-prefix insertion in case of single-carrier transmission. . . . . . . . . . . 72 5.6 Orthogonal multiple access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.7 FDMA with flexible bandwidth assignment. . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.8 DFTS-OFDM signal generation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.9 PAR distribution for OFDM and DFTS-OFDM. . . . . . . . . . . . . . . . . . . . . . . 77 5.10 Basic principle of DFTS-OFDM demodulation. . . . . . . . . . . . . . . . . . . . . . . 78

5.11DFTS-OFDM demodulator with frequency-domain

equalization.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

5.12 Uplink user multiplexing in case of DFTS-OFDM. . . . . . . . . . . . . . . . . . . . 79 5.13 DFTS-OFDM with frequency-domain spectrum shaping. . . . . . . . . . . . . . 80 5.14 PAR distribution and cubic metric for DFTS-OFDM with

different spectrum shaping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.15 Distributed DFTS-OFDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.16 Spectrum of localized and distributed DFTS-OFDM signals. . . . . . . . . . . 82 5.17 User multiplexing in case of localized and distributed

DFTS-OFDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1Linear receive-antenna combining.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

6.2Linear receive-antenna combining.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

List of Figures

xv

6.3 Downlink scenario with a single dominating interferer. . . . . . . . . . . . . . . . 88 6.4 Receiver scenario with one strong interfering mobile

terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5Two-dimensional space/time linear processing.. . . . . . . . . . . . . . . . . . . . . . .90

6.6Two-dimensional space/frequency linear processing.. . . . . . . . . . . . . . . . . .90

6.7 Two-antenna delay diversity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.8 Two-antenna Cyclic-Delay Diversity (CDD). . . . . . . . . . . . . . . . . . . . . . . . . 92 6.9 WCDMA Space–Time Transmit Diversity (STTD). . . . . . . . . . . . . . . . . . . 93 6.10 Space–Frequency Transmit Diversity assuming two transmit

antennas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.11 Classical beam-forming with high mutual antennas

correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.12 Pre-coder-based beam-forming in case of low mutual

antenna correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.13 Per-subcarrier pre-coding in case of OFDM. . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.14 2 × 2-antenna configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.15 Linear reception/demodulation of spatially multiplexed

signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.16 Pre-coder-based spatial multiplexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.17 Orthogonalization of spatially multiplexed signals by means of

pre-coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.18 Single-codeword transmission vs. multi-codeword

transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.19 Demodulation/decoding of spatially multiplexed signals based

on Successive Interference Cancellation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 (a) power control and (b) rate control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.2 Channel-dependent scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3Example of three different scheduling behaviors for two users with different average channel quality: (a) max C/I, (b) round

robin, and (c) proportional fair. The selected user is shown

with bold lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4Illustration of the principle behavior of different scheduling strategies: (a) for full buffers and

(b) for web browsing traffic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.5 Example of Chase combining.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 7.6 Example of incremental redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.1 WCDMA evolution.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 8.2 WCDMA radio-access network architecture. . . . . . . . . . . . . . . . . . . . . . . . 132 8.3 WCDMA protocol architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]