Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3G Evolution. HSPA and LTE for Mobile Broadband

.pdf
Скачиваний:
9
Добавлен:
15.11.2022
Размер:
4.07 Mб
Скачать

LTE radio interface architecture

313

multiplexing) of data to transmit. To each transport block, a CRC is attached and each such CRC-attached transport block is separately coded. The channel coding rate, including the rate matching necessary, is implicitly determined by the transport-block size, the modulation scheme, and the amount of resources assigned for transmission. All these quantities are selected by the downlink scheduler. The redundancy version to use is controlled by the hybrid-ARQ protocol and affects the rate-matching processing to generate the correct set of coded bits. Finally, in case of spatial multiplexing, the antenna mapping is also under control of the downlink scheduler.

The scheduled mobile terminal receives the transmitted signal and performs the reverse physical-layer processing. The physical layer at the mobile terminal also informs the hybrid-ARQ protocol whether the transmission was successfully decoded or not. This information is used by the MAC part of the hybrid-ARQ functionality in the mobile terminal to determine whether a retransmission shall be requested or not.

The physical-layer processing for the UL-SCH follows closely the processing for the DL-SCH. However, note that the MAC scheduler in the eNodeB is responsible for selecting the mobile terminal transport format and resources to be used for uplink transmission as described in Section 15.2.3. The UL-SCH physical layer processing is shown, in simplified form, in Figure 15.8.

1 transport blocks of dynamic size per TTI

MAC scheduler

 

 

 

 

 

 

 

 

 

 

 

 

Hybrid-ARQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACK/NAK

 

ncy version

 

Error indication

 

 

 

 

 

 

 

 

 

 

 

da

 

 

 

 

CRC check

 

 

 

Redun

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decoding

 

 

 

 

 

 

 

 

 

 

Modulation

 

 

 

 

 

 

 

 

 

 

 

 

scheme

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data demodulation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resource assignment

Resource demapping

MAC

PHY

From Node B scheduler

 

 

 

 

 

 

 

 

 

 

 

Hybrid-ARQ

 

 

MAC

 

ACK/NAK

 

ionersvncy

 

 

 

 

PHY

 

 

 

 

 

 

 

 

 

 

 

da

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRC

 

 

 

 

Redun

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coding, rate matching

 

 

 

 

 

 

 

 

 

Modulation

 

 

 

 

 

 

 

 

 

 

scheme

 

 

 

 

Data modulation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resource

assignment

Resource mapping

eNodeB

mobile terminal

 

(UE)

Figure 15.8 Simplified physical-layer processing for UL-SCH.

314

3G Evolution: HSPA and LTE for Mobile Broadband

The remaining downlink transport channels are based on the same general physical-layer processing as the DL-SCH, although with some restrictions in the set of features used. For the broadcast of system information on the BCH, a mobile terminal must be able to receive this information channel as one of the first steps prior to accessing the system. Consequently, the transmission format must be known to the terminals a priori and there is no dynamic control of any of the transmission parameters from the MAC layer in this case.

For transmission of paging messages on the PCH, dynamic adaptation of the transmission parameters can to some extent be used. In general, the processing in this case is similar to the generic DL-SCH processing. The MAC can control modulation, the amount of resources, and the antenna mapping. However, as an uplink has not yet been established when a mobile terminal is paged, hybrid ARQ cannot be used as there is no possibility for the mobile terminal to transmit an ACK/NAK.

The MCH is used for MBMS transmissions, typically with single-frequency network operation as described in Chapter 4 by transmitting from multiple cells on the same resources with the same format at the same time. Hence, the scheduling of MCH transmissions must be coordinated between the involved cells and dynamic selection of transmission parameters by the MAC is not possible.

15.4LTE states

In LTE, a mobile terminal can be in several different states as illustrated in Figure 15.9. At power-up, the mobile terminal enters the LTE_DETACHED state. In this state, the mobile terminal is not known to the network. Before any further communication can take place between the mobile terminal and the network, the mobile terminal need to register with the network using the random-access

Power-up

 

 

LTE_DETACHED

LTE_ACTIVE

LTE_IDLE

• No IP address

IP address assigned

• IP address assigned

• Position not known

Connected to known cell

• Position partially known

 

 

 

• DL DRX period

OUT_OF_SYNC

 

 

 

IN_SYNC

• DL reception possible

 

 

 

• DL reception possible

• No UL transmission

 

 

 

• UL transmission possible

Figure 15.9 LTE states.

LTE radio interface architecture

315

procedure to enter the LTE_ACTIVE state. LTE_DETACHED is mainly a state used at power-up; once the mobile terminal has registered with the network, it is typically in one of the other states, LTE_ACTIVE or LTE_IDLE.

LTE_ACTIVE is the state used when the mobile terminal is active with transmitting and receiving data. In this state, the mobile terminal is connected to a specific cell within the network. One or several IP addresses have been assigned to the mobile terminal, as well as an identity of the terminal, the Cell Radio-Network Temporary Identifier (C-RNTI), used for signaling purposes between the mobile terminal and the network. LTE_ACTIVE can be said to have two substates, IN_SYNC and OUT_OF_SYNC, depending on whether the uplink is synchronized to the network or not. Since LTE uses an orthogonal FDMA/TDMA-based uplink, it is necessary to synchronize the uplink transmission from different mobile terminals such that they arrive at the eNodeB at (approximately) the same time. The procedure for obtaining and maintaining uplink synchronization is described in Chapter 16, but in short the eNodeB measures the arrival time of the transmissions from each actively transmitting mobile terminal and sends timing-correction commands in the downlink. As long as the uplink is in IN_SYNC, uplink transmission of user data and L1/L2 control signaling is possible. In case no uplink transmission has taken place within a given time window, timing alignment is obviously not possible and the uplink is declared to be OUT-OF-SYNC. In this case, the mobile terminal needs to perform a random-access procedure to restore uplink synchronization.

LTE_IDLE is a low activity state in which the mobile terminal sleeps most of the time in order to reduce battery consumption. Uplink synchronization is not maintained and hence the only uplink transmission activity that may take place is random access to move to LTE_ACTIVE. In the downlink, the mobile terminal can periodically wake up in order to be paged for incoming calls as described in Chapter 17. The mobile terminal keeps its IP address(es) and other internal information in order to rapidly move to LTE_ACTIVE when necessary. The position of the mobile terminal is partially known to the network such that the network knows at least the group of cells in which paging of the mobile terminal is to be done.

15.5Data flow

To summarize the flow of downlink data through all the protocol layers, an example illustration for a case with three IP packets, two on one radio bearer and one on another radio bearer, is given in Figure 15.10. The data flow in case of uplink transmission is similar. The PDCP performs (optional) IP header compression, followed by ciphering. A PDCP header is added, carrying information required for deciphering in the mobile terminal. The output from the PDCP is fed to the RLC.

316

 

 

 

 

 

 

 

 

 

 

 

3G Evolution: HSPA and LTE for Mobile Broadband

 

 

 

 

 

 

SAE bearer 1

 

 

 

 

 

 

SAE bearer 1

 

 

 

SAE bearer 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Header

Payload

 

 

 

Header

 

 

Payload

 

 

 

Header

 

 

Payload

 

 

 

 

 

 

PDCP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Header

Payload

 

 

 

 

 

Header

Payload

 

 

 

Header

 

Payload

 

 

 

 

 

 

header

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compression,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ciphering

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PDCP

PDCP SDU

 

 

 

 

PDCP

 

PDCP SDU

 

 

 

 

PDCP

 

 

PDCP SDU

 

 

 

 

 

 

header

 

 

 

 

header

 

 

 

 

 

header

 

 

 

 

 

RLC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RLC SDU

 

 

 

 

 

RLC SDU

 

 

 

 

 

 

RLC SDU

 

 

 

 

 

 

 

segmentation,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

concatenation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RLC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RLC

 

 

 

 

 

 

RLC

 

 

 

 

 

 

header

 

 

 

 

 

 

 

 

 

 

 

 

 

 

header

 

 

 

 

 

header

 

 

 

 

 

MAC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAC

 

 

 

 

 

MAC SDU

 

 

 

 

 

 

 

 

 

MAC

 

MAC SDU

 

 

 

 

multiplexing

 

header

 

 

 

 

 

 

 

 

 

 

 

 

 

 

header

 

 

 

PHY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transport block

 

 

 

 

 

 

CRC

 

 

Transport block

CRC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.10 Example of LTE data flow.

The RLC protocol performs concatenation and/or segmentation of the PDCP SDUs and adds an RLC header. The header is used for in-sequence delivery (per logical channel) in the mobile terminal and for identification of RLC PDUs in case of retransmissions. The RLC PDUs are forwarded to the MAC layer, which takes a number of RLC PDUs, assembles those into a MAC SDU, and attaches the MAC header to form a transport block. The transport-block size depends on the instantaneous data rate selected by the link adaptation mechanism. Thus, the link adaptation affects both the MAC and RLC processing. Finally, the physical layer attaches a CRC to the transport block for error-detection purposes, performs coding and modulation, and transmits the resulting signal over the air.

16

LTE physical layer

In the previous chapter, the LTE radio-interface architecture was discussed with an overview of the functions and characteristics of the different protocol layers. This chapter will provide a more detailed discussion on the current state of the lowest of these protocol layers, the LTE physical layer.The next chapter will then go further into some specific LTE access procedures, including random access and cell search.

16.1Overall time-domain structure

Figure 16.1 illustrates the high-level time-domain structure for LTE transmission with each (radio) frame of length Tframe = 10 ms consisting of ten equally sized subframes of length Tsubframe = 1 ms.

To provide consistent and exact timing definitions, different time intervals within the LTE radio access specification can be expressed as multiples of a basic time unit Ts = 1/30720000.1 The time intervals outlined in Figure 16.1 can thus also be expressed as Tframe = 307200 · Ts and Tsubframe = 30720 · Ts.

One radio frame (Tframe = 10 ms)

One subframe (Tsubframe = 1 ms)

 

 

 

 

 

 

 

 

 

 

#0

#1 . . .

#9

Figure 16.1 LTE time-domain structure.

1 The reason for this exact value of Ts will be clarified in the next section.

317

318

3G Evolution: HSPA and LTE for Mobile Broadband

Within one carrier, the different subframes of a frame can either be used for downlink transmission or for uplink transmission. As illustrated in Figure 16.2a, in case of FDD, that is operation in paired spectrum, all subframes of a carrier are either used for downlink transmission (a downlink carrier) or uplink transmission (an uplink carrier). On the other hand, in case of operation with TDD in unpaired spectrum (Figure 16.2b), the first and sixth subframe of each frame (subframe 0 and 5) are always assigned for downlink transmission while the remaining subframes can be flexibly assigned to be used for either downlink or uplink transmission. The reason for the predefined assignment of the first and sixth subframe for downlink transmission is that these subframes include the LTE synchronization signals. The synchronization signals are transmitted on the downlink of each cell and are intended to be used for initial cell search as well as for neighbor-cell search. The principles of LTE cell search, including the structure of the synchronization signals, are described in more detail in Chapter 17.

As also illustrated in Figure 16.2, the flexible assignment of subframes in case of TDD allows for different asymmetries in terms of the amount of radio resources (subframes) assigned for downlink and uplink transmission, respectively. As the subframe assignment needs to be the same for neighbor cells in order to avoid severe interference between downlink and uplink transmissions between the cells, the downlink/uplink asymmetry cannot vary dynamically, on, for example, a

Frequency Division Duplex (FDD)

One radio frame (Tframe = 10 ms)

Downlink carrier

Uplink carrier

One subframe (Tsubframe = 1ms)

(a)

Time Division Duplex (TDD) Approximately

symmetric

Asymmetric (downlink focus)

Asymmetric (uplink focus)

First and sixth subframe always assigned for downlink transmission

 

Downlink transmission

 

Uplink transmission

(b)

Figure 16.2 Examples of downlink/uplink subframe assignment in case of TDD and comparison

with FDD.

LTE physical layer

319

frame-by-frame basis. However, it can be changed on a slower basis to, for example, match different traffic characteristics such as differences and variations in the downlink/uplink traffic asymmetry.

What is being illustrated in Figure 16.1 is sometimes referred to as the generic or Type 1 LTE frame structure. This frame structure is applicable for both FDD and TDD. In addition to the generic frame structure, for LTE operating with TDD there is also an alternative or Type 2 frame structure, specifically designed for coexistence with systems based on the current 3GPP TD-SCDMA-based standard. The remaining discussions within this and the following chapters will assume the Type 1 frame structure unless explicitly stated otherwise.

16.2Downlink transmission scheme

16.2.1 The downlink physical resource

As already mentioned in the overview of the LTE radio access provided in Chapter 14, LTE downlink transmission is based on Orthogonal Frequency Division Multiplex (OFDM). As described in Chapter 4, the basic LTE downlink physical resource can thus be seen as a time-frequency resource grid (see Figure 16.3), where each resource element corresponds to one OFDM subcarrier during one OFDM symbol interval.2

For the LTE downlink, the OFDM subcarrier spacing has been chosen tof = 15 kHz. Assuming an FFT-based transmitter/receiver implementation, this corresponds to a sampling rate fs = 15000 · NFFT, where NFFT is the FFT size. The time unit Ts defined in the previous section can thus be seen as the sampling time of an FFT-based transmitter/receiver implementation with NFFT = 2048. It is important to understand though that the time unit Ts is introduced in the LTE radio-access

Frequency

 

 

f

 

 

 

 

One resource element

Time

One OFDM symbol

Figure 16.3 The LTE downlink physical resource.

2 In case of multi-antenna transmission, there will be one resource grid per antenna.

320

3G Evolution: HSPA and LTE for Mobile Broadband

specification purely as a tool to define different time intervals and does not impose any specific transmitter and/or receiver implementation constraints, e.g. a certain sampling rate. In practice, an FFT-based transmitter/receiver implementation with NFFT = 2048 and a corresponding sampling rate fs = 30.72 MHz is suitable for the wider LTE transmission bandwidths, such as bandwidths in the order of 15 MHz and above. However, for smaller transmission bandwidths, a smaller FFT size and a correspondingly lower sampling rate can very well be used. As an example, for transmission bandwidths in the order of 5 MHz, an FFT size NFFT = 512 and a corresponding sampling rate fs = 7.68 MHz may be sufficient.

One argument for adopting a 15 kHz subcarrier spacing for LTE was that it may simplify the implementation of WCDMA/HSPA/LTE multi-mode terminals. Assuming a power-of-two FFT size and a subcarrier spacing f = 15 kHz, the sampling rate fs = f · NFFT will be a multiple or sub-multiple of the WCDMA/HSPA chip rate fcr = 3.84 MHz. Multi-mode WCDMA/HSPA/LTE terminals can then straightforwardly be implemented with a single clock circuitry.

In addition to the 15 kHz subcarrier spacing, a reduced subcarrier spacingflow = 7.5 kHz is also defined for LTE. The reduced subcarrier spacing specifically targets MBSFN-based multicast/broadcast transmissions as will be further discussed in Section 16.2.6. The remaining discussions within this and the following chapters will assume the 15 kHz subcarrier spacing unless explicitly stated otherwise.

As illustrated in Figure 16.4, in the frequency domain the downlink subcarriers are grouped into resource blocks, where each resource block consists of 12 consecutive subcarriers3 corresponding to a nominal resource-block bandwidth of 180 kHz. In addition, there is an unused DC-subcarrier in the center of the downlink spectrum. The reason why the DC-subcarrier is not used for any transmission is that it may

One resource block (12 subcarriers, 180 kHz)

f 15 kHz

DC - subcarrier

NRB resource blocks (12NRB 1 subcarrier)

Figure 16.4 LTE downlink frequency-domain structure.

3 The resource blocks are actually two-dimensional (time-frequency) units with a size of 12 subcarriers times one 0.5 ms slot (7/6 OFDM symbols), see also Figure 16.6.

LTE physical layer

321

coincide with the local-oscillator frequency at the base-station transmitter and/or mobile-terminal receiver. As a consequence, it may be subject to un-proportionally high interference, for example, due to local-oscillator leakage.

The total number of subcarriers on a downlink carrier, including the DC-subcarrier, thus equals Nsc = 12 · NRB + 1, where NRB is the number of resource blocks. The LTE physical-layer specification actually allows for a downlink carrier to consist of any number of resource blocks, ranging from 6 resource blocks up to more than 100 resource blocks. This corresponds to a nominal downlink transmission bandwidth ranging from around 1 MHz up to at least in the order of 20 MHz with a very fine granularity. As already touched upon in Chapter 14, this allows for a very high degree of LTE bandwidth/spectrum flexibility, at least from a physical- layer-specification point-of-view. However, as also touched upon in Chapter 14, LTE radio-frequency requirements are, at least initially, only specified for a limited set of transmission bandwidths, corresponding to a limited set of possible values for the number of resource blocks NRB.

Figure 16.5 outlines the more detailed time-domain structure for LTE downlink transmission. Each 1 ms subframe consists of two equally sized slots of length Tslot = 0.5 ms (15360 · Ts). Each slot then consists of a number of OFDM symbols including cyclic prefix.

One subframe two slots (Tsubframe 1 ms)

Tslot 0.5 ms

Normal CP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TCP

 

Tu 66.7 s

 

 

 

 

Extended CP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TCP-e

 

 

Tu 66.7 s

 

 

 

 

TCP : 160·Ts 5.2 s (first OFDM symbol), 144·Ts 4.7 s (remaining OFDM symbols)

TCP-e : 512·Ts 16.7 s

Figure 16.5 LTE downlink subframe and slot structure. One subframe consisting of two equally-sized slots. Each slot consisting of six or seven OFDM symbols in case of normal and extended cyclic prefix, respectively.

322

3G Evolution: HSPA and LTE for Mobile Broadband

According to Chapter 4, a subcarrier spacing f = 15 kHz corresponds to a useful symbol time Tu = 1/ f ≈ 66.7 µs (2048 · Ts). The overall OFDM symbol time is then the sum of the useful symbol time and the cyclic-prefix length TCP. As illustrated in Figure 16.5, LTE defines two cyclic-prefix lengths, the normal cyclic prefix and an extended cyclic prefix, corresponding to seven and six OFDM symbols per slot, respectively. The exact cyclic-prefix lengths, expressed in the basic time unit Ts, are given in Figure 16.5. It should be noted that, in case of the normal cyclic prefix, the cyclic-prefix length for the first OFDM symbol of a slot is somewhat larger, compared to the remaining OFDM symbols. The reason for this is simply to fill the entire 0.5 ms slot as the number of time units Ts per slot (15360) is not dividable by seven.

The reasons for defining two cyclic-prefix lengths for LTE are twofold:

1.A longer cyclic prefix, although less efficient from an overhead point-of-view, may be beneficial in specific environments with very extensive delay spread, for example in very large cells. It is important to have in mind though that a longer cyclic prefix is not necessarily beneficial in case of large cells, even if the delay spread is very extensive in such cases. If, in large cells, link performance is limited by noise rather than by signal corruption due to residual time dispersion not covered by the cyclic prefix, the additional robustness to radio-channel time dispersion, due to the use of a longer cyclic prefix, may not justify the corresponding loss in terms of received signal energy.

2.As already discussed in Chapter 4, in case of MBSFN-based multicast/broadcast transmission, the cyclic prefix should not only cover the main part of the actual channel time dispersion but also the main part of the timing difference between the transmissions received from the cells involved in the MBSFN transmission. In case of MBSFN operation, the extended cyclic prefix is therefore typically needed.

Thus, the main use of the LTE extended cyclic prefix is expected to be MBSFNbased transmission. It should be noted that different cyclic-prefix lengths may be used for different subframes within a frame. As an example, MBSFN-based multicast/broadcast transmission may be confined to certain subframes in which case the use of the extended cyclic prefix, with its associated additional cyclic-prefix overhead, should only be applied to these subframes.

Taking into account also the downlink time-domain structure, the resource blocks mentioned above consist of 12 subcarriers during a 0.5 ms slot, as illustrated in Figure 16.6. Each resource block thus consists of 12 · 7 = 84 resource elements in case of normal cyclic prefix and 12 · 6 = 72 resource elements in case of extended cyclic prefix.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]