Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
74
Добавлен:
12.11.2022
Размер:
7.76 Mб
Скачать

Фермент, катализирующий превращение субстрата А в продукт В, имеет аллостерический центр для отрицательного эффектора, которым служит конечный продукт метаболического пути F. Если концентрация F увеличивается (т. е. вещество F синтезируется быстрее, чем расходуется), ингибируется активность одного из начальных ферментов. Такую регуляцию называют отрицательной обратной связью, или ретроингибированием. Отрицательная обратная связь — часто встречающийся механизм регуляции метаболизма в клетке.

В центральных метаболических путях исходные вещества могут быть активаторами ключевых ферментов метаболического пути. Как правило, при этом аллостерической активации подвергаются ферменты, катализирующие ключевые реакции заключительных этапов метаболического пути:

В качестве примера можно рассмотреть принципы регуляции гликолиза — специфического (начального) пути распада глюкозы. Один из конечных продуктов распада глюкозы — молекула АТФ. При избытке в клетке АТФ происходит ретроингибирование аллостерических ферментов фосфофруктокиназы и пируваткиназы. При образовании большого количества фруктозо-1,6-бисфосфата наблюдают аллостерическую активацию фермента пируваткиназы:

Плюсами отмечена активация, минусами — ингибирование ферментов.

Благодаря такой регуляции осуществляется слаженность протекания метаболического пути распада глюкозы.

Регуляция каталитической активности ферментов белок-белковыми взаимодействиями.

Некоторые ферменты изменяют свою каталитическую активность в результате белок-белковых взаимодействий. Термин белок-белковое взаимодействие обозначает ситуацию, когда в качестве регулятора выступают не метаболиты биохимических процессов, а специфичные белки. В целом ситуация схожа с аллостерическим механизмом: после влияния каких-либо факторов на специфичные белки изменяется активность этих белков, и они, в свою очередь, воздействуют на нужный фермент.

1. К примеру, мембранный фермент аденилатциклаза является чувствительным к воздействию мембранного G-белка, который сам активируется при действии на клетку некоторых гормонов (например, адреналина и глюкагона):

2. Еще примером белок-белкового взаимодействия может быть регуляция активности протеинкиназы А через механизм ассоциации-диссоциации.

Протеинкиназа А является тетрамерным ферментом, состоящим из 2 каталитических (С) и 2 регуляторных (R) субъединиц. Активатором для протеинкиназы А является цАМФ. Присоединение цАМФ к регуляторным субъединицам фермента вызывает их отхождение от каталитических субъединиц. Каталитические субъединицы при этом активируются:

Регуляция каталитической активности ферментов путём фосфорилирования/дефосфорилирования

В биологических системах часто встречается механизм регуляции активности ферментов с помощью ковалентной модификации аминокислотных остатков. Быстрый и широко распространённый способ химической модификации ферментов

— фосфорилирование/дефосфорилирование. Модификации подвергаются ОНгруппы фермента. Фосфорилирование осуществляется ферментами протеинкиназами, а дефосфорилирование — фосфопротеинфосфатазами. Присоединение остатка фосфорной кислоты приводит к изменению конформации активного центра и его каталитической активности. При этом результат может быть двояким: одни ферменты при фосфорилировании активируются, другие, напротив, становятся менее активными:

Изменение активности фермента, вызванное фосфорилированием, обратимо. Отщепление остатка фосфорной кислоты осуществляется ферментами фосфопротеинфосфатазами. Активность протеинкиназ и фосфопротеинфосфатаз регулируется гормонами, что позволяет быстро изменять активность ключевых ферментов метаболических путей в зависимости от условий внешней среды. Антагонистичные по функции гормоны противоположным образом влияют на фосфорилирование/дефосфорилирование ферментов, вызывая противоположные эффекты изменения метаболизма клетки.

Например, под действием глюкагона (в период между приёмами пищи) в клетках происходит уменьшение синтеза энергетического материала — жира, гликогена и усиление его распада (мобилизация), вызванного фосфорилированием ключевых ферментов этих процессов. А под действием инсулина (во время пищеварения), наоборот, активируется синтез гликогена и ингибируется его распад, так как взаимодействие инсулина с рецептором активирует сигнальный путь, приводящий к дефосфорилированию тех же ключевых ферментов.

Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом

Ограниченный (частичный) протеолиз проферментов подразумевает, что синтез некоторых ферментов осуществляется в виде более крупного предшественника и при поступлении в нужное место этот фермент активируется через отщепление от него одного или нескольких пептидных фрагментов. Подобный механизм защищает внутриклеточные структуры от повреждений.

Примером служит активация протеолитических ферментов желудочно-кишечного тракта (трипсиноген, пепсиноген, прокарбоксипептидазы), факторов свертывающей системы крови, лизосомальных ферментов (катепсины).

Секреция ряда ферментов за пределы клетки в неактивном состоянии позволяет предохранить клетки от повреждения (пищеварительные ферменты) или сохранить белок в плазме крови до наступления определенного момента (факторы свертывания крови, белки системы комплемента и т.п.).

Энзимопатии

В случае, если фермент не может выполнять свою функцию, говорят об энзимопатологии (энзимопатии).

Энзимопатологии (энзимопатии) – состояния, связанные с патологическим увеличением или снижением активности ферментов. Наиболее часто встречается снижение их активности с нарушением соответствующих метаболических процессов. При энзимопатологии клиническое значение может иметь

накопление субстрата реакции, например: фенилаланина при фенилкетонурии, свободного билирубина при физиологических желтухах новорожденных, некоторых жиров при болезнях лизосомального накопления (липидозы),

недостаток продукта, например: меланина при альбинизме, катехоламинов при паркинсонизме,

обе особенности одновременно, как при гликогенозах, сопровождающихся гипогликемией при избытке гликогена в печени.

По характеру нарушения выделяют первичные и вторичные энзимопатии.

Первичные (наследственные) энзимопатии связаны с генетическим дефектом и наследственным снижением активности. Например, фенилкетонурия связана с дефектом фенилаланин-4-монооксигеназы, которая превращает фенилаланин в тирозин. В результате накапливаются аномальные метаболиты фенилаланина,

оказывающие сильный токсический эффект. Заболевание подагра связано с дефектом ферментов метаболизма пуриновых оснований и накоплением мочевой кислоты.

Кроме указанных, примером первичных энзимопатий являются галактоземия, недостаточность лактазы и сахаразы, различные липидозы и гликогенозы.

Вторичные (приобретенные) энзимопатии возникают как следствие заболеваний органов, вирусных инфекций и т.п., что приводит к нарушению синтеза фермента или условий его работы, например, гипераммониемия при заболеваниях печени, при которых ухудшается синтез мочевины и в крови накапливается аммиак. Другим примером может служить недостаточность ферментов желудочно-кишечного тракта при заболеваниях желудка, поджелудочной железы или желчного пузыря.

Недостаток витаминов и их коферментных форм также является причиной приобретенных ферментопатий.

Применение ферментов в медицине

Ферментные препараты широко используют в медицине. Ферменты в медицинской практике находят применение в качестве диагностических (энзимодиагностика) и терапевтических (энзимотерапия) средств. В этом разделе мы остановимся на основных принципах энзимодиагностики и энзимотерапии.

Использование ферментов в медицине происходит по четырем направлениям:

энзимодиагностика,

энзимотерапия,

использование ферментов в медицинских технологиях и промышленности.

применение ингибиторов ферментов

Энзимодиагностика

Энзимодиагностика – это исследование активности ферментов биологических жидкостей с целью диагностики тех или иных заболеваний. В основе лежат два факта:

1.Заболевание органа приводит к понижению синтеза ферментов в клетках. Если некоторые ферменты секретируются клетками наружу, то их активность в биологической жидкости снижается. Примером является снижение активности белков гемостаза, церулоплазмина и псевдохолинэстеразы в крови при заболеваниях печени.

2.При воспалении или некрозе в ткани происходит разрушение клеток, в результате чего внутриклеточные ферменты (органоспецифичные) оказываются в плазме крови или в моче, их активность в сыворотке крови повышается.

Примером для второго случая может служить фермент лактатдегидрогеназа, определение его активности в сыворотке крови необходимо при заболеваниях сердца, печени, скелетной мускулатуры. Увеличение активности α-амилазы в плазме крови и моче наблюдается при воспалительных процессах в поджелудочной и слюнных железах.

Энзимотерапия

Энзимотерапия – это использование ферментов в качестве лекарственных средств.

Самыми распространенными ферментативными препаратами являются многочисленные комплексы ферментов (Ацидин-пепсин, Фестал, Энзистал, Панкреатин, Мезим форте, Воб-энзим, Креон и т.п.), отличающиеся по источнику ферментов (животная или растительная основа) и содержащие пепсин, трипсин, амилазу, лактазу и т.п., и используемые для заместительной терапии при нарушениях переваривания веществ в желудочно-кишечном тракте.

Тканевой фермент гиалуронидаза нужна организму для обратимого изменения проницаемости межклеточного вещества, в основе которого находится гиалуроновая кислота. Лекарственную форму гиалуронидазы – лидазу – вводят для размягчения рубцов, появления подвижности в суставах, рассасывания гематом.

Коллагеназу применяют для ускорения отторжения некротизированных тканей, для очистки трофических язв.

Цитохром с – белок, участвующий в процессах тканевого дыхания. Его применяют при асфиксии новорожденных, при гипоксии тканей – астматические состояния, сердечная недостаточность, нарушения мозгового и периферического кровообращения и т.п.

Рибонуклеаза и дезоксирибонуклеаза входят в состав глазных капель для лечения вирусных конъюнктивитов, также при нанесении на рану они разжижают гной, при ингаляциях уменьшают вязкость слизи, деполимеризуя нуклеиновые кислоты в мокроте.

Стрептокиназа и урокиназа используются как активаторы фибринолиза при тромбозах. Трипсин ингалируют при бронхолегочных заболеваниях для разжижения густой и вязкой мокроты. Фицин используется в фармацевтической промышленности в качестве добавки к зубным пастам для удаления зубного налета.

Использование ферментов в медицинских технологиях

Специфичность ферментов к определенным субстратам широко нашла применение в настоящее время в лабораторной диагностике.

многие лабораторные методы основаны на взаимодействии добавляемого извне фермента с определяемым соединением. В результате возникает специфичный продукт реакции, после определения содержания последнего судят о концентрации искомого вещества (глюкозооксидазный, холестеролоксидазный методы),

иммуноферментные методы, основанные на образовании тройного комплекса фермент-антиген-антитело. Определяемое вещество не является субстратом фермента, но является антигеном. Фермент может присоединять этот антиген вблизи от активного центра. Если в среде есть антиген, то при добавлении антител и формировании тройного комплекса активность фермента изменяется. Активность фермента измеряют любым способом, при этом активность фермента зависит от количества антигена (определяемого вещества).

Использование ингибиторов ферментов

Весьма широко применяются в настоящее время ингибиторы ферментов, чтобы остановить биохимический процесс, и этим предотвратить накопление патологических продуктов процесса или способствовать сохранению необходимых веществ.

Ингибиторы протеаз (контрикал, гордокс) при панкреатитах используются при состояниях, когда происходит активирование пищеварительных ферментов в протоках и клетках поджелудочной железы.

Ингибиторы холинэстеразы (физостигмин, прозерин) приводят к накоплению нейромедиатора ацетилхолина в синапсах и показаны при миастении, двигательных и чувствительных нарушениях при невритах, радикулитах, психогенной импотенции.

Препараты, содержащие ингибиторы моноаминоксидазы (наком, мадопар), повышают выработку нейромедиаторов катехоламинов в ЦНС при лечении паркинсонизма. Подавление активности моноаминооксидазы (разрушающей катехоламины) сохраняет нормальную передачу сигналов в нервной системе.

Ингибиторы ангиотензинпревращающего фермента (каптоприл, эналаприл и т.п.) используются как антигипертензивное средство и вызывают расширение периферических сосудов, уменьшение нагрузки на миокард, снижение артериального давления.

Аллопуринол – ингибитор ксантиноксидазы, фермента катаболизма пуринов, требуется для снижения образования мочевой кислоты и подавления развития гиперурикемии и подагры.

Ингибиторы гидроксиметилглутарил-SКоА-редуктазы (ловастатин,

флувастатин, аторвастатин) применяются для снижения синтеза холестерола при атеросклерозе, заболеваниях сердечно-сосудистой системы, дислипопротеинемиях.

Ингибитор карбоангидразы (ацетазоламид) используется как мочегонное средство при лечении глаукомы, отеков, эпилепсии, алкалозах и горной болезни.

Витамины — низкомолекулярные органические соединения различной химической природы и различного строения, синтезируемые главным образом растениями, частично — микроорганизмами. Для человека витамины — незаменимые пищевые факторы.

Классификация витаминов

1. Жирорастворимые витамины: D (кальциферол), E (токоферол), F (полиненасыщенные жирные кислоты), K (нафтохинон), A (ретинол).

Функция жирорастворимых витаминов может быть коферментной (витамин К), антиоксидантной (витамины А и Е), или гормональной (витамины A и D).

2. Водорастворимые витамины: B1 (тиамин), B2 (рибофлавин), B3 (никотинамид), B5 (пантотеновая кислота), B6 (пиридоксин), B9 C, фолиевая кислота),

B12 (кобаламины), H (B7, биотин), C (аскорбиновая кислота).

Водорастворимые витамины выполняют роль коферментов и простетических групп – таких молекул, которые непосредственно участвуют в работе ферментов.

3. Также выделяют витаминоподобные вещества:

жирорастворимые – Q (убихинон),

водорастворимые – B4 (холин), P (биофлавоноиды), B8 (инозит),

B10 (парааминобензойная кислота), B11 (BT, карнитин), U (S-метилметионин), N (липоевая кислота), B13 (оротовая кислота), B14 (метоксантин, пиррол-хинолин- хинон), B15 (пангамовая кислота).

Провитамины

Некоторые витамины поступают в организм в виде провитаминов. В организме провитамины превращаются в активные формы, например:

каротиноиды, в частности β-каротин, превращаются в витамин А,

пищевой эргостерол или 7-дегидрохолестерол под действием ультрафиолетовых лучей превращаются соответственно в эргокальциферол (витамин D2) и холекальциферол (витамин D3).

Антивитамины

Соединения, препятствующие проявлению эффектов витамина тем или иным образом, получили название антивитамины. Их подразделяют на две основные группы:

1.Вещества, которые инактивируют витамин путем его расщепления, разрушения или связывания его молекул в неактивные формы. Примером служит яичный белок авидин или фермент тиаминаза.

2.Вещества, похожие по структуре на тот или иной витамин. Эти вещества конкурентно вытесняют витамины из ферментов, препятствуют образованию их коферментных форм или участию в реакциях. Примером являются препараты

группы сульфаниламидов (антифолаты), дикумарол (антивитаминК), изониазид (антиитамин РР).

Свойства витаминов

Независимо от своих свойств витамины характеризуются следующими общебиологическими свойствами:

1.В организме витамины не образуются, их биосинтез осуществляется вне организма человека, т.е. витамины должны поступать с пищей. Тех витаминов, которые синтезируются кишечной микрофлорой обычно недостаточно для покрытия потребностей организма (строго говоря, это тоже внешняя среда). Исключением является витамин РР, который может синтезироваться из триптофана, и витамин

D (холекальциферол), синтезируемый из холестерола.

2.Витамины не являются пластическим материалом. Исключение

витаминF(витамин F включает схожие полиненасыщенные жирные кислоты).

3.Витамины не служат источником энергии. Исключение – витамин F.

4.Витамины необходимы для всех жизненных процессов и биологически активны уже в малых количествах.

5.При поступлении в организм они оказывают влияние на биохимические процессы, протекающие в любых тканях и органах, т.е. они неспецифичны по органам.

6.В повышенных дозах могут использоваться в лечебных целях в качестве

неспецифических средств: при сахарном диабете – B1, B2, B6, при простудных и инфекционных заболеваниях – витамин С, при бронхиальной астме – витамин РР, при язвах ЖКТ – витаминоподобное вещество U и никотиновая кислота, при гиперхолестеринемии – никотиновая кислота.

Жирорастворимые витамины

Витамин А (ретинол, антиксерофтальмический)

Источники

Спищевыми продуктами в организм поступает как витамин А, так

икаротиноиды – вещества, схожие с ним по строению:

-витамин А содержат рыбий жир, печень морских рыб, печень крупного рогатого скота и свиньи, жирномолочные продукты (сливочное масло, сливки, сметана), желток яиц,

-каротиноиды имеются в красных овощах (морковь, красный перец, томаты), в пальмовом и в облепиховом масле.

Метаболизм

Всасывается только 1/6 часть потребленных каротиноидов. После всасывания некоторые каротиноиды в кишечнике превращаются в ретинол, при этом из β- каротина образуется 2 молекулы витамина А.

Строение

Ретиноиды представляют собой β-иононовое кольцо с метильными заместителями и изопреновой цепью. В организме спиртовая группа ретинола окисляется в свои активные формы: альдегидную (ретиналь) или карбоксильную

(ретиноевая кислота) группы.

Строение витамина А и его активных форм

Строение β-каротина

Биохимические функции

1. Регуляция экспрессии генов

Ретиноевая кислота служит лигандом для суперсемейства ядерных рецепторов, к числу которых относятся рецепторы к стероидным гормонам

(кортизол, тестостерон), к витамину D, трийодтиронину, простагландинам, к транскрипционным факторам. Таким образом, она абсолютно необходима для экспрессии генов, участвующих в процессах развития клетки и обеспечивающих чувствительность клеток к гормонам и ростовым стимулам. Благодаря такой функции ретиноевая кислота:

-регулирует нормальный рост и дифференцировку клеток эмбриона и молодого организма,

-стимулирует деление и дифференцировку клеток быстро делящихся тканей – хряща, костной ткани, сперматогенного эпителия, плаценты, эпителия кожи, слизистых оболочек, клеток иммунной системы.