Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Маслов ИНТРОДУЦТИОН ТО ПХЫСИЦС ОФ СЕЦОНД-ОРДЕР МАГНЕТИЦ 2015

.pdf
Скачиваний:
1
Добавлен:
12.11.2022
Размер:
1.03 Mб
Скачать

where α ≈ θa2, so that at

and thus

g(gR)

at R >> a. Designating

rewrite Eq. (25.24) as

J (q) =q−αq2 ,

T > θ from Eq. (25.11) we have

 

 

 

 

T

 

 

 

 

 

 

 

 

 

g(q) =

 

 

 

 

 

 

 

 

 

T −q+ αq2

 

 

 

 

 

 

1 T a

 

 

 

 

 

 

 

 

R

 

 

 

 

 

T

−θ

 

 

 

 

 

exp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4p θ R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ a

 

 

ξ = a

 

θ

 

,

 

 

 

 

 

 

 

 

T −θ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g(gR) Ra exp(Rx).

(25.22)

(25.23)

(25.24)

(25.25)

(25.26)

We see that the correlation function falls off exponentially with the distance R between two moments at a characteristic length ξ. This is why

ξ is called the correlation length or the correlation radius. Of fundamental importance is that ξ increases as T decreases and diverges as T 0.

We turn to the case T < θ. At T = 0 from Eq. (25.20) one has g(R) =

= 1 for any R. At 0 < T < θ and R >> a the expression for g(R) takes the form

g

2

 

1 T a

 

 

R

 

 

g(R) x

 

+

 

 

 

exp

 

 

,

(25.27)

 

4p θ R

 

 

 

 

 

 

x

 

 

where the correlation length ξ is now

 

θ

 

ξ = a

2(θ−T ) .

(25.28)

It diverges at T → θ, as in the case T > θ.

Finally we note that correlations of magnetic moments are intimately related to their fluctuations, the corresponding operators being

δσiz = σiz σiz T :

71

 

 

 

 

 

 

δ δ

2

.

(25.29)

δσiz δσjz

= σiz σjz

− σiz

σjz

= g(Ri Rj ) x

 

T

 

T

 

T

T

 

 

 

26. Heat capacity of a ferromagnet in the Ising model with account for fluctuations

For the contribution from local magnetic moments to the specific heat of a ferromagnet (that is, for the “spin component” of the specific heat) in the mean field approximation we had, see § 20:

0,

T > θ;

 

 

3

 

(26.1)

Cs (T ) =

kB N, T = θ.

 

2

 

 

 

 

This contradicts the experiment that clearly points to the divergence of

Cs at T → θ.

Let us calculate Cs beyond the mean field approximation, with consideration for fluctuations of local magnetic moments, see § 25. By definition,

Cs (T ) = dEs (T ) .

(26.2)

dT

 

where Es(T) is a component part of the total internal energy stemming from the subsystem of local magnetic moments. In the Ising model it is equal to the thermodynamic average of the model Hamiltonian, see Eq. (10.6):

Es (T ) = −

1

/

Jij

 

(26.3)

 

 

siz sjz

 

2 i, j

 

 

 

T

(we restrict ourselves to the case of zero magnetic field). Taking Eqs. (25.1) and (25.17) into account, one has

Es (T ) = −

1

J (q)g(q) ,

(26.4)

 

2

q

 

where the function g(q) is temperature dependent.

Let us calculate Cs(T) in the very vicinity of the Curie temperature θ. Making use of expressions for g(q) at T > θ and T < θ, see § 25, evalu-

72

ating the sum over q in Eq. (26.4), and restoring the proper dimensionality, from Eq. (26.2) we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ

 

, T

 

> θ;

 

 

 

 

 

 

 

 

k

 

T −θ

Cs (T )

B

N

 

 

 

(26.5)

 

 

 

 

 

 

 

 

16π

 

θ

 

 

 

, T < θ.

 

 

 

 

 

 

 

 

 

 

 

2(θ−T )

 

 

 

 

 

 

 

 

 

 

 

Two equations (26.5) can be combined into a single one:

Cs (T )

 

T −θ

 

0,5 at T → θ.

(26.6)

 

 

The critical exponent α = 0.5 in Eq. (26.6) differs from the experimental value α ≈ 0.1. Note however that accurate experimental determination of α is hampered by the sample inhomogeneity.

27. Magnetic susceptibility of a ferromagnet in the Ising model with account for fluctuations

Our purpose is to calculate the differential magnetic susceptibility

 

χ = ∂M (H ) H ,

 

 

(27.1)

where

 

 

 

 

 

 

 

 

 

 

N

 

 

 

NµB

 

 

 

M =

µkz

 

T

=

σkz

 

 

(27.2)

 

 

 

 

 

T

 

 

 

V

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

does not depend

is the magnetization (we took into account that σkz T

on k). From Eqs. (27.1) and (27.2) one has

 

 

 

 

 

 

 

NµB2

 

 

 

h ,

 

 

 

χ =

 

 

 

∂ σkz T

 

 

(27.3)

V

 

 

 

h = µBH. Recall that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trσkz exp(H / T )

 

 

 

σkz T

=

 

 

 

 

 

 

 

,

(27.4)

 

 

 

 

Q

 

 

where

73

 

 

1

N

/

 

h

N

 

 

 

Q =Tr exp(H

/ T )=Tr exp

 

 

Jij σiz σjz +

 

σiz

(27.5)

 

 

T

 

 

2T i, j=1

 

 

i=1

 

 

 

is the partition function. Taking in Eq. (27.5) the derivatives of both sides with respect to h/T, we have

 

Q (h / T )

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

=Trσiz

exp(H / T )=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

= NQ

 

,

 

= Trσiz exp(H

/ T )= Q

σiz

 

 

σkz

 

i=1

 

 

 

 

 

 

 

 

 

 

 

 

 

i=1

 

 

 

 

T

 

T

 

so that

 

 

 

1

 

 

 

 

Q

 

1

 

 

 

ln Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

σkz T =

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NQ

 

(h / T )

 

 

N

 

(h / T )

 

 

 

and hence

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ(H ) =

µ2 2 ln Q

 

 

 

 

µ2 1

2Q

 

 

1

Q

 

2

B

 

 

 

=

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

VT (h / T )

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

VT Q (h / T )

 

 

Q (h / T )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(27.6)

(27.7)

(27.8)

Now let us calculate the second derivative of Q with respect to h/T making use of Eq. (27.5):

2Q

 

 

N

 

2

 

 

N

 

2

 

 

 

=Tr

σiz

exp(H / T )= Q

 

σiz

. (27.9)

(h / T )

2

 

 

=

 

 

 

 

 

=

 

 

T

 

 

i 1

 

 

 

i 1

 

From Eqs. (27.6), (27.8), and (27.9) one has

 

 

 

 

µB2

 

 

N

2

 

 

N

 

 

2

 

χ =

 

 

 

 

 

 

 

σiz

σiz

 

 

 

=

 

 

 

 

 

 

 

 

 

VT

i=1

 

T

i=1

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

µB2

 

 

N

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

σiz σjz

− σiz

σjz

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

T

 

 

 

 

 

VT i, j=1

 

 

 

 

 

T

 

(27.10)

 

 

 

 

 

µ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

=

 

 

B

 

 

g(Ri

Rj ) N 2 x2

 

=

 

 

 

 

 

VT

 

 

 

 

 

 

 

i, j=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

µ2

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

=

 

B

 

N g(q =

0) N 2 x2

.

 

 

 

 

 

 

VT

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

74

Making use of Eqs. (25.19) and (25.20) we arrive at

χ =

µ2

1

at T > θ and T → θ,

(27.11)

B

 

 

VT T −θ

 

 

 

 

 

χ =

µ2

 

 

1

 

at T < θ and T → θ.

(27.12)

 

B

 

 

 

 

 

VT 2(θ−T )

 

 

 

Note that both these expressions do not differ from those derived in the mean field approximation, see § 21. Thus, account for fluctuations does not lead to qualitative changes in magnetic susceptibility.

28. Ising model for antiferromagnets. Mean-field approximation. Neél temperature

Up to this point we considered systems with exchange integral Jij > 0. As this takes place, the energy of the system is minimal if the

magnetic moments have the same direction like this ↑↑↑... ↑↑. And

what would happen if Jij < 0 ? Let us try to study this

question. Again

denote the Jij = J ( J < 0 ) for the nearest neighbors

and Jij = 0 for

other magnetic moments.

The beginning Hamiltonian will have the same form (see Eq. 10.7)

 

1

/

 

 

(28.1)

H = −

 

 

Jij σiz σjz hσiz .

 

2 i, j

 

 

i

 

Considering the mean-field approximation rewrite it in the following way

 

/

 

 

 

(28.2)

H E0′ −

 

Jij σiz

σjz

hσiz .

i, j

 

 

 

i

 

Further, we shall leave out E0

account for energy calculation obtaining. Finally receive

constant because it should be taken into but it is unimportant for order parameter

 

 

 

 

 

 

(28.3)

H

= −σiz h + Jij

σjz

.

 

i

 

ij

 

 

 

75

This Hamiltonian has the same form as the Hamiltonian within the Ising model for ferromagnets. Earlier we denoted σjz = x (order parame-

ter). For every j these mean values σjz are identical due to the fact

that in ferromagnetic alignment all magnetic moments have the same direction. For antiferromagnets it will be different. For two neighboring

magnetic moments energy is equal to J σiz σjz , and it has the minimal

 

 

 

have different signs. In other

value if σiz σjz = −1, i.e.,

σiz

and σjz

words neighboring magnetic moments have different directions ( ↑↓). This applies for any pair of neighboring magnetic moments. What are our expectations? For one-dimensional case it will be like this:

↑↓↑↓↑↓... ↑↓. For two-dimensional simple cubic lattice the ordering is shown on Fig. 28.1.

↑↓↑↓↑↓↑↓

↓↑↓↑↓↑↓↑

↑↓↑↓↑↓↑↓

↓↑↓↑↓↑↓↑

Fig. 28.1. Magnetic moments ordering in the case of antiferromagnets

So, some atoms have σiz > 0 and other atoms have σiz < 0 , thus

we can not consider siz = x = const for i. Let us divide out system

(the whole lattice) to two sublattices A and B with alternating arrangement of the nodes (see Fig. 28.2).

Such sublattices are called embedded sublattices. Since we consider that Jij = J 0 only for the neighboring magnetic moments, such divi-

sion on two sublattices suggest that magnetic moments of one sublattice do not interact with each other.

76

Fig. 28.2. Sublattices A and B with alternating arrangement of the nodes

Let us write the Hamiltonian considering the division on embedded sublattices. If the i-th magnetic moment refers to A-sublattice, we shall

denote it as iA . Analogously, if the i-th magnetic moment refers to B-

sublattice, we shall denote it as iB . We shall write σiA and σiB for pro-

jection operators of these magnetic moments for A- and B-sublattices, respectively. For example, the sum throughout the whole lattice consists of two sums for each sublattice

 

 

 

(28.4)

σiz = σiA z + σiB z .

i

iA

iB

 

The Hamiltonian has the following form

 

 

 

 

 

 

 

 

=

 

 

 

H

= −σiz h + Jij

σjz

 

 

 

 

 

i

 

 

ji

 

 

 

 

(28.5)

 

 

JiA j

 

 

 

 

 

 

 

= −σiA z h +

σjz

 

σiB z h + JiB j σjz

.

iA

 

jiA

 

 

iB

 

 

jiB

 

 

Since we consider that only neighboring magnetic moments interact with each other then

 

 

zJxB ,

(28.6)

JiA j σjz

= JiA jB σjB z

jiA

jB

 

 

where JiA jB = J for neighboring magnetic moments and z is the number of the nearest neighbors. Here we denote σjB z = xB : it is the mean value of magnetic moment projection in B-sublattice. We consider that

77

σjB z does not depend on the magnetic moment position in B-

sublattice, since all these moments are located in the same environment of magnetic moment from A-sublattice. Analogously

 

 

zJxA ,

(28.7)

JiB j σjz

= JiB jA σjA z

jiB

jA

 

 

where σjA z = xA is the mean value of magnetic moment projection in

A-sublattice. Therefore we have two different order parameters: xA for A-sublattice and xB B-sublattice. Finally, for our Hamiltonian we obtain

 

 

 

(28.8)

H

= −σiA z (h + zJxB )σiB z (h + zJxA ).

 

iA

iB

 

Denote the effective magnetic fields acting on A- and B-sublattices, respectively

hA = h + zJx ;

eff B

heffB = h + zJxA .

Therefore the Hamiltonian takes the following form

 

A

 

B

 

H

= −heff σiA z heff σiB z .

 

iA

 

iB

 

(28.9)

(28.10)

As in the case of ferromagnets, we obtain the Hamiltonian of noninteracting magnetic moments placed into the “effective external field” dis-

tinct

for

each sublattice.

 

Denote

ˆ

A

 

and

 

HA = −heff σiA z

 

 

 

 

 

 

iA

 

 

ˆ

B

 

 

 

 

 

 

 

HB = −heff σiB z , and rewrite our Hamiltonian in the following form

 

 

iB

 

 

 

 

 

 

 

 

ˆ

ˆ

ˆ

 

 

 

(28.11)

 

 

H = HA + HB .

 

 

 

 

ˆ

 

 

ˆ

 

 

 

 

Since HA

acts only on A-sublattice and HB acts only on B-sublattice

78

 

 

 

 

 

 

 

 

 

ˆ

 

T

)

 

 

 

 

A

 

 

 

 

 

 

 

 

 

HA

 

 

 

 

 

 

 

xA

 

 

Tr (σiA ze

 

 

 

 

 

heff

 

 

σiA z

=

 

 

 

 

 

 

 

 

 

 

= tanh

 

 

 

=

 

 

Tr (e

 

ˆ

T

 

)

 

 

 

 

 

 

 

 

HA

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

T

)

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

HB

 

 

 

 

 

 

 

 

 

 

Tr (σiB ze

 

 

 

 

 

 

 

heff

 

xB

σiB z

=

 

 

 

 

 

 

 

 

 

 

= tanh

 

 

 

 

 

 

=

 

Tr (e

 

ˆ

 

 

)

 

 

 

 

T

 

 

 

 

 

HB T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the absence of magnetic field we obtain

 

 

 

 

 

 

 

 

 

 

 

 

x

A

= tanh

 

zJxB

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zJxA

.

 

 

 

 

 

 

 

 

 

 

x

B

= tanh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tanh h + zJxB ;

T

tanh h + zJxA .

T

(28.12)

(28.13)

One can see that xA

 

 

and xB

have the different signs, since

us show that the solution with

xB = −xA

exists. Denote

xB = −x. Since J = −

 

J

 

< 0 we obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

zJ (x)

 

z

 

J

 

x

 

 

 

 

 

 

 

= tanh

 

 

 

 

= tanh

 

 

 

 

 

.

 

 

 

 

 

 

 

T

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Denote z J TN , then

x= tanh x TN .

T

J < 0 . Let xA = x and

(28.14)

(28.15)

This equation has the same form as for a ferromagnet, but instead of Curie temperature θ one can see another temperature TN . The solution

is already known (see Fig. 28.3).

At T =TN the phase transition is take place, and order parameter be-

comes nonzero. All formulae that we obtained for ferromagnets (see § 14) are valid by replacing the Curie temperature θ on the TN

x

 

3

1

T

 

, T T

(T

<T

);

(28.16)

 

 

 

 

 

 

 

 

 

 

 

T

 

N

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

x

 

12e2TN T , T 0.

 

 

(28.17)

 

 

 

 

 

 

 

79

The value TN is called the Neél temperature or transition temperature into antiferromagnetic state.

Fig. 28.3. Parameter order dependence on temperature for antiferromagnets

Since xB = −x , at T =TN the spontaneous magnetization occurs in

every sublattice, but atomic magnetic moments in these sublattices are oppositely directed. Total magnetic moments of A- and B-sublattices are equal in magnitude and opposite in direction. That is why the total magnetization is equal to zero

 

 

 

N

 

 

 

N

 

 

 

 

 

 

N

 

 

 

 

 

 

N

 

µiA z

 

 

+ µiB z

 

 

 

 

 

µB

σiA z

 

 

 

B

σiB z

 

 

 

=

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

M =

 

=

 

 

 

2

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

(28.18)

 

 

 

 

 

 

N

 

 

 

 

N

 

 

 

 

 

 

N

 

 

 

 

 

N

 

 

 

 

µ

x

 

x

 

µ

 

x

−µ

 

x

 

 

 

 

 

 

 

=

 

B A 2

B B 2

 

=

 

B

2

 

 

 

B

2

 

= 0.

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

But the differential

magnetic

 

 

susceptibility

 

 

 

 

 

may not

 

 

χ =

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H 0

equal to zero in contrast to χ =

M .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29. Magnetic susceptibility of the Ising antiferromagnet in the mean-field approximation

As we have seen, the total magnetization in antiferromagnet is equal

to zero. Therefore the magnetic susceptibility

χ =

M

is equal to zero as

 

 

H

 

80

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]