- •Горки 2013
- •1. Предисловие
- •2. Требования к знаниям и умениям студентов
- •3. Учебная программа примерный тематический план
- •Содержание учебного материала введение
- •Раздел 1. Химия радиоактивных элементов и изотопов
- •1.1. Классификация радионуклидов. Естественная радиоактивность. Техногенные (искусственные) радионуклиды
- •1.2. Радионуклиды в окружающей среде
- •Раздел 2. Физико-химические особенности
- •2.4. Адсорбция радиоактивных изотопов
- •2.5. Состояние радиоактивных изотопов в ультрамалых концентрациях
- •Раздел 3. Прикладная радиохимия
- •3.1. Получение и выделение радиоактивных изотопов
- •3.2. Синтез меченых радиоактивными изотопами соединений
- •3.3. Радиоактивные отходы (рао)
- •Информационная часть Примерный перечень лабораторно-практических занятий
- •4. Учебно-методическая карта дисциплины (стационар)
- •Учебно-методическая карта заочное отделение
- •5. Конспект лекций
- •1. Химия радиОнуклидов
- •1.1. Классификация радионуклидов
- •1.2. Естественная радиоактивность
- •1.2.1. Характеристика естественных радиоактивных элементов и изотопов
- •Т а б л и ц а 5.2. Концентрация радионуклидов рядов урана в основных продуктах питания и воздухе
- •Организм человека и создаваемые ими дозы облучения
- •1.2.2. Космогенные радионуклиды. Понятие об ядерных реакциях
- •1.3. Техногенные радионуклиды
- •Важных радионуклидов пяд
- •Облучения населения ссср от глобальных радиоактивных выпадений вследствие испытаний ядерного оружия
- •1.3.2. Аварии на военных ядерных установках
- •1.3.3. Физические и химические свойства радионуклидов йода, цезия, стронция, плутония, америция
- •Изотопов цезия
- •От возраста (в % β-активности)
- •Действие ионизирующих излучений
- •1.4. Радионуклиды в почвах Республики Беларусь
- •1.5. Радиохимический анализ природных объектов
- •2. Физико-химические особенности радионуклидов
- •2.1. Поведение изотопных частиц
- •2.2. Изотопный обмен
- •2.2.1. Основные определения. Виды изотопного обмена
- •2.2.2. Механизмы изотопного обмена
- •2.2.3. Причины протекания реакций изотопного обмена
- •2.3. Распределение радионуклидов между двумя фазами
- •2.4. Адсорбция радионуклидов
- •2.5. Состояния радионуклидов в растворах при ультрамалых концентрациях
- •3. Прикладная радиохимия
- •3.1. Получение и выделение радиоактивных изотопов
- •3.3. Радиоактивные отходы (рао)
- •3.3.1. Образование и классификация радиоактивных отходов
- •Отходов по удельной радиоактивности
- •3.3.2. Основные стадии обращения с рао:
- •3.3.3. Требования к сбору, хранению и удалению радиоактивных отходов из организации
- •3.3.4. Требования к транспортированию радиоактивных отходов
- •3.3.5. Требования к размещению и оборудованию специализированных организаций по обращению с радиоактивными отходами
- •3.3.7. Требования к долговременному хранению и (или) захоронению радиоактивных отходов
- •6. Вопросы для сдачи модулей Модуль №1 Вопросы:
- •Задачи:
- •Модуль №2 Вопросы:
- •10. Применение носителей в радиохимическом анализе.
- •Задачи:
- •Модуль №3 Вопросы:
- •7. Экзаменационные вопросы
- •29. Применение носителей в радиохимическом анализе.
- •8. Учебно-методическое пособие для выполнения лабораторных работ
- •Задание 3. Приготовление титрованного раствора стабильного цезия и определение его титра
- •1. Определение титра раствора по сурьмяно-йодиду цезия
- •2. Определение титра раствора по висмут-иодиду цезия
- •Задание 1. Выделение и концентрирование стронция-90
- •Максимальной энергии бета-спектра
- •Растворов сравнения
- •Инструкция по технике безопасности при работе в радиохимической лаборатории
- •Значения поправочных коэффициентов на распад и накопление y
- •9. Методические указания по изучению дисциплины и индивидуальные задания для студентов заочной формы обучения
- •1. Рекомендации по изучению дисциплины
- •2. Выполнение индивидуальных заданий
- •3. Перечень индивидуальных заданий
- •10. Учебная практика по радиохимии
- •Геннадий Анатольевич Чернуха учебно-методический комплекс
- •213407, Могилевской область, г. Горки, ул. Мичурина, 5
Действие ионизирующих излучений
Излучение
|
Энергия, МэВ
|
Пробег в мышечной ткани, мкм |
Среднее число ионизации на пути в 1 мкм |
Средняя ЛПЭ, кэВ/мкм
|
Коэффи- циент ОБЭ |
Рентгеновские лучи и гамма-лучи |
1 |
2·106 и более |
15 |
0,49 |
1 |
Бета-частицы |
1 |
4,4·103 |
8 |
0,23 |
1 |
Альфа-частицы |
5 |
35 |
4500 |
143,0 |
10 |
Протоны |
1 |
22 |
— |
45,0 |
10 |
Нейтроны |
0,9 |
— |
840 |
27,4 |
10 |
Излучения, имеющие высокую ЛПЭ, обладают, как правило, большой биологической эффективностью. Это свидетельствует о том, что степень действия различных видов излучения зависит не только от общего количества поглощенной энергии, но и от геометрических характеристик распределения ее в органах, тканях и клетках.
Для выражения различий биологического действия излучений с неодинаковыми значениями ЛПЭ принят коэффициент относительной биологической эффективности (ОБЭ). Значения его взяты относительно рентгеновских лучей и зависят от типа облучаемого объекта и характера облучения. Например, при общем облучении организма быстрыми нейтронами коэффициент ОБЭ равен 10, а при местном облучении половых желез – 35.
Период полураспада радионуклида — важная характеристика его биологической активности. Наибольшую опасность для млекопитающих и птиц представляют изотопы с периодом полураспада от нескольких дней до нескольких десятков лет. Это объясняется тем, что при коротком периоде полураспада, измеряемом секундами-минутами, основная масса радионуклида распадается, не достигнув тканей организма, и, следовательно, не создает опасной концентрации. Например, период полураспада 210Ро или 220Ра составляет 3·107с; период полураспада изотопов 134I, 136I...140I, являющихся продуктами деления тяжелых ядер, равен нескольким секундам-минутам.
Радионуклиды с большим периодом полураспада (десятки тысяч лет и более) в естественных условиях также не смогут создать эффективной дозы, которая привела бы к развитию лучевого заболевания. Например, 228U имеет период полураспада 4,5·109 лет; к тому же, если учесть, что в земной коре его находится 0,0001 %, а в организме еще меньше, то получается, что в естественных условиях он не вызовет у животных лучевой болезни. Однако в некоторых случаях токсичность коротко- или долгоживущего радионуклида может усиливаться дочерними радионуклидами.
Физико-химические свойства вещества, в составе которого радионуклид попадает в организм. При поступлении радионуклидов в организм их биологическое действие во многом будет определяться агрегатным состоянием вещества. Наибольшее действие оказывают те радионуклиды, которые легко образуют газы и водорастворимые соединения. Они интенсивно и в большом количестве всасываются в кровь, быстро распространяются по всему организму или концентрируются в соответствующих органах.
Биологическое действие малорастворимых или нерастворимых соединений радионуклидов определяется степенью дисперсности аэрозоля или порошка, в форме которых они поступают в организм. Нерастворимые радиоактивные частицы, попадая в легкие, на слизистые оболочки, в желудочно-кишечный тракт с кормом или водой, могут адсорбироваться эпителиальными клетками или клетками ретикулоэндотелиальной системы или задерживаться в желудке, кишечнике и длительное время облучать ткани, вызывая явное местное радиационное поражение.
На степень биологического действия радионуклидов при внутреннем поступлении большое влияние оказывает наличие нерадиоактивных изотопов этого элемента или химического элемента-аналога в данном веществе. Например, элементы-аналоги кальций и стронций принадлежат ко второй группе элементов. В радиохимии для предотвращения потерь радиоактивного изотопа в химических реакциях специально добавляют определенные количества нерадиоактивных соединений этого элемента или его химического аналога. Эти добавки принято называть носителями; в первом случае они называются изотопными, во втором — неизотопными. При одновременном поступлении в организм радионуклида и его носителя всасывание и отложение их в тканях идет в прямо пропорциональном отношении к поступившему количеству. На основании указанной закономерности предложены методы защиты отдельных органов от лучевого поражения радионуклидами. Например, полноценные по кальцию рационы (кальций — неизотопный носитель стронция) значительно уменьшают инкорпорацию радиоизотопов стронция в костной ткани.