
- •Билет 1
- •Билет 2
- •Пути обезвреживания аммиака. Механизмы транспорта аммиака в организме: глутаминовый и глюкозо-аланиновый циклы.
- •Билет 3
- •1. Липопротеины очень низкой и низкой плотности: формирование, функции и метаболизм.
- •2. Особенности обмена аминокислот и белков в нервной ткани. Метаболический цикл глутаминовой кислоты.
- •Билет 4
- •Билет 5
- •Билет 6
- •Билет 7
- •1 Комплекс. Надн-КоQ-оксидоредуктаза
- •2 Комплекс. Фад-зависимые дегидрогеназы
- •3 Комплекс. КоQ-цитохром с-оксидоредуктаза
- •4 Комплекс. Цитохром с-кислород-оксидоредуктаза
- •Билет 8
- •Билет 9-1 ????
- •Метаболизм кетоновых тел при голодании
- •Билет 9
- •1. Цикл трикарбоновых кислот (цтк). Биологическая роль.
- •2. Особенности метаболизма в эритроцитах и лейкоцитах.
- •Билет 10
- •1 Схема-
- •2 Схема-
- •3 Этап оу – промежуточный обмен
- •1 Стадия облучения билирубина в коже с образованием люмирубина.
- •2 Стадия. Люмирубин попадает в кровь и выводится с жёлчью и мочой.
- •Билет 11
- •Билет 12
- •1. Этапы аэробного гликолиза
- •Билет 13
- •Билет 14
- •1. Липопротеины высокой плотности: формирование, функции и метаболизм.
- •2. Функции сосудистого эндотелия, субэндотелия и тромбоцитов. Сосудисто-тромбоцитарный гемостаз (первичный).
- •Билет 15
- •1. Переваривание белков в желудочно-кишечном тракте. Биологическое значение переваривания. Схема процесса. Характеристика пищеварительных ферментов.
- •2. Строение и состав мембран. Общие свойства мембран и их функции. Трансмембранный перенос малых молекул. Типы переноса веществ через мембрану. Трансмембранный перенос макромолекул и частиц.
- •Билет 16
- •1. Трансаминирование аминокислот, биологическое значение, субстраты, ферменты, роль витаминов в этом процессе.
- •2. Роль афк в механизме фагоцитоза. Кислородзависимые и кислороднезависимые механизмы фагоцитоза. Роль афк в антимикробной защите грудного молока.
- •Билет 17
- •1. Окислительное дезаминирование (прямое, непрямое) аминокислот. Схема процесса, стадии, ферменты, биологическое значение процесса.
- •2. Гормоны щитовидной железы: химическая природа и структура, этапы биосинтеза.
- •Билет 18
- •1. Декарбоксилирование аминокислот. Биологическое значение. Продукты и их судьба.
- •2. Альдостерон: химическая природа, механизм действия, органы-мишени, биологические эффекты.
- •Билет 19
- •1. Синтез мочевины: схема реакций, суммарное уравнение. Взаимосвязь с цтк. Клиническое значение определения концентрации мочевины в крови и моче, причины повышения и понижения концентрации мочевины.
- •Билет 19 – 2 ????
- •Билет 20
- •1. Катаболизм пуриновых нуклеотидов. Содержание мочевой кислоты в сыворотке крови в норме и причины его повышения. Подагра.
- •2. Инсулин: химическая природа, локализация биосинтеза, схема синтеза, механизм действия, органы-мишени, биологические эффекты.
- •Билет 21
- •1. Схема переваривания пищевых липидов в жкт: этапы, субстраты, ферменты, роль продуктов гидролиза, роль жёлчных кислот.
- •2. Особенности метаболизма и энергетического обмена в клетках поперечно-полосатой мускулатуры и миокарда.
- •Билет 22
- •1. Этапы катаболизма жирных кислот: реакции, ферменты. Энергетический эффект полного окисления с16:0. Регуляция процесса β-окисления вжк.
- •2. Активные формы кислорода (афк). Биологическое действие афк. Ферментативные и неферментативные системы, генерирующие афк.
- •Билет 23
- •1. Анаэробный распад глюкозы (анаэробный гликолиз). Судьба продуктов гликолиза в анаэробных условиях. Биологическое значение анаэробного распада глюкозы. Цикл Кори.
- •Билет 23-2 ???
- •Билет 24
- •1. Биологическое значение и структуры кетоновых тел. Синтез кетоновых тел в печени; регуляция синтеза. Представление о кетонемии, кетонурии и кетоацидозе.
- •2. Биохимические механизмы адаптации к голоданию, типы голодания. Фазы полного голодания. Изменение гормонального статуса и метаболизма при голодании.
- •1. Обмен углеводов
- •2. Обмен жиров
- •Билет 25
- •1. Схема синтеза глицеролфосфолипидов. Особенности строения глицерофосфолипидов в функционировании сурфактанта легкого.
- •2. Кальцитриол: химическая природа, этапы синтеза, механизм действия, органы-мишени, биологические эффекты. Представление о заболевании «рахит».
- •Билет 25-2 ???
- •Билет 26
- •2. Адреналин: химическая природа, механизм действия, органы-мишени, биологические эффекты екты.
- •Билет 27
- •1. Функции клеточного метаболизма. Понятие о процессах катаболизма и анаболизма. Стадии генерирования энергии по Кребсу.
- •2. Ферментативные системы антирадикальной защиты. Катализируемые реакции.
- •Билет 28
- •1. Синтез креатина, креатинфосфата, креатинина. Функции этих соединений в организме.
- •2. Типы переваривания. Функции жкт как пищеварительно-транспортного конвейера. Функции слюны. Функции желчных кислот.
- •Билет 29
- •1. Этапы биосинтеза жирных кислот: реакции, ферменты. Регуляция процесса биосинтеза вжк.
- •2. Гормоны щитовидной железы: химическая природа и структура, этапы биосинтеза.
- •Билет 30
- •1. 1. Пентозо-фосфатный путь (пфп) окисления глюкозы. Биологическое значение.
- •Билет 31
- •Билет 32
- •Билет 33
- •Билет 34 (не точно)-1
- •1. Распад гликогена в печени и скелетных мышцах. Регуляция этих процессов.
- •2. Повреждающее действие первичных и вторичных продуктов пероксидного окисления на мембраны и другие структуры клетки.
- •Билет 34 (не точно)-2
- •Билет 35
- •1. Классификация лп. Структура и состав липопротеидных частиц. Апобелки и их функции. Ферменты, участвующие в метаболизме лп. Индекс атерогенности.
- •2. Биологическая роль печени в регуляции углеводного обмена. Обмен фруктозы и галактозы.
- •2. Роль печени в пигментном обмене. Виды желтух и причины их возникновения. Физиологическая желтуха новорожденных.
- •Билет 36
- •1. Структура и функции холестерина в организме человека. Фонд, пути использования в организме и выведения холестерина. Биосинтез холестерина, метаболическая и гормональная регуляция.
- •2. Предсердный натрийуретический фактор (пнф): химическая природа, механизм действия, органы-мишени, биологические эффекты.
- •Билет 37
- •1 Комплекс. Надн-КоQ-оксидоредуктаза
- •2 Комплекс. Фад-зависимые дегидрогеназы
- •3 Комплекс. КоQ-цитохром с-оксидоредуктаза
- •4 Комплекс. Цитохром с-кислород-оксидоредуктаза
- •1. Разобщители цпэ.
- •Билет 38
- •Билет 39
- •1. Этапы аэробного гликолиза
- •Билет 40
- •Билет 41 ???
- •Билет 42
Билет 6
1. Субстратное фосфорилирование: сущность, биологическое
значение процесса, примеры.
Синтез АТФ, протекающий помимо дыхательной цепи либо за счет окисления, либо за счет молекулярной перестройки субстрата, называют субстратным фосфорилированием. Синтез АТФ в значительно меньшем объеме может происходить и помимо дыхательной цепи за счет анаэробного окисления субстратов или их молекулярной перестройки – субстратное фосфорилирование.
Пример преобразование 2-фосфоглицериновой кислоты в пировиноградную кислоту:
1)отщепление молекулы воды енолазой с запасанием высвободившейся энергии в макроэргической связи с остатком фосфорной кислоты;
2)перефосфорилированиес АДФ;
Субстратное фосфорилирование участвует в анаэробном расщеплении глюкозы. За счет субстратного фосфорилирования 1 молекулы глюкозы синтезируется 6 молекул АТФ.
2.Механизмы трансмембранной передачи гормонального
сигнала в клетку.
Важное свойство мембран - способность воспринимать и передавать внутрь клетки сигналы из внешней среды. "Узнавание" сигнальных молекул осуществляется с помощью белков-рецепторов, встроенных в клеточную мембрану клеток-мишеней или находящихся в клетке. сли сигнал воспринимается мембранными рецепторами, то схему передачи информации можно представить так:
взаимодействие рецептора с сигнальной молекулой (первичным посредником);
активация мембранного фермента, ответственного за образование вторичного посредника;
образование вторичного посредника цАМФ, цГМФ, ИФ3, ДАТ или Са2+;
активация посредниками специфических белков, в основном протеинкиназ, которые, в свою очередь, фосфорилируя ферменты, оказьюают влияние на активность внутриклеточных процессов.
3.Эндотелиальная дисфункция и развитие ИБС. Роль NO
Задача:
Результат анализа мочи: суточный объём – 3,5 л, плотность – 1050 кг/м3, глюкоза (+), кетоновые тела (+). Сравнить данные с нормальными показателями и сделайте предположение о состоянии пациента
Сахарный диабет I типа. суточный диурез в норме составляет 1,5-2,0 л
Билет 7
1. Цепь переноса электронов (ЦПЭ), сопряжение дыхания и синтеза АТФ в митохондриях, коэффициент окислительного фосфорилирования. Ингибиторы и разобщители ЦПЭ.
Перенос электронов на кислород происходит при участии системы переносчиков, локализованных во внутренней мембране митохондрий и образующих цепь переноса электронов (ЦПЭ)
В состав ЦПЭ входят: NADH-дегидрогеназа (комплекс I), сукцинатдегидрогеназа (комплекс II), QН2-дегидрогеназа (комплекс III), цитохромоксидаза (комплекс IV).
1 Комплекс. Надн-КоQ-оксидоредуктаза
1.Принимает электроны от НАДН и передает их на коэнзим Q (убихинон).
2.Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.
НАД + 2Н+ + 2е ↔ НАД·Н2
2 Комплекс. Фад-зависимые дегидрогеназы
включает в себя ФАД-зависимые ферменты, расположенные на внутренней мембране – например, ацил-SКоА-дегидрогеназа (окисление жирных кислот), сукцинатдегидрогеназа (цикл трикарбоновых кислот).
Функция
1.Восстановление ФАД в окислительно-восстановительных реакциях.
2.Обеспечение передачи электронов от ФАДН2 на железосерные белки внутренней мембраны митохондрий. Далее эти электроны попадают на коэнзим Q.