Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety_bkh_2.docx
Скачиваний:
22
Добавлен:
25.06.2022
Размер:
7.01 Mб
Скачать

Билет 37

1) Цепь переноса электронов (ЦПЭ), сопряжение дыхания и

синтеза АТФ в митохондриях, коэффициент окислительного

фосфорилирования. Ингибиторы и разобщители ЦПЭ. Перенос электронов на кислород происходит при участии системы переносчиков, локализованных во внутренней мембране митохондрий и образующих цепь переноса электронов (ЦПЭ) 

В состав ЦПЭ входят: NADH-дегидрогеназа (комплекс I), сукцинатдегидрогеназа (комплекс II), QН2-дегидрогеназа (комплекс III), цитохромоксидаза (комплекс IV).

1 Комплекс. Надн-КоQ-оксидоредуктаза

1.Принимает электроны от НАДН и передает их на коэнзим Q (убихинон).

2.Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

НАД + 2Н+ + 2е ↔ НАД·Н2

2 Комплекс. Фад-зависимые дегидрогеназы

включает в себя ФАД-зависимые ферменты, расположенные на внутренней мембране – например, ацил-SКоА-дегидрогеназа (окисление жирных кислот), сукцинатдегидрогеназа (цикл трикарбоновых кислот).

Функция

1.Восстановление ФАД в окислительно-восстановительных реакциях.

2.Обеспечение передачи электронов от ФАДН2 на железосерные белки внутренней мембраны митохондрий. Далее эти электроны попадают на коэнзим Q.

3 Комплекс. КоQ-цитохром с-оксидоредуктаза

По другому данный комплекс называется цитохром с редуктаза. В его составе имеются цитохром b и цитохром c1, 2 железо-серных белка.

Функция

1.Принимает электроны от коэнзима Q и передает их на цитохром с.

2.Переносит 2 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

4 Комплекс. Цитохром с-кислород-оксидоредуктаза

В этом комплексе находятся цитохромы а и а3. В комплексе также имеется 2 иона меди.

Функция

1.Принимает электроны от цитохрома с и передает их на кислород с образованием воды.

2.Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

Окисление молекулы NADH в ЦПЭ сопровождается образованием 3 молекул АТФ; электроны от FAD-зависимых дегидрогеназ поступают в ЦПЭ на KoQ, минуя первый пункт сопряжения. Поэтому образуются только 2 молекулы АТФ. Отношение количества фосфорной кислоты (Р), использованной на фосфорилирование АДФ, к атому кислорода (О), поглощённого в процессе дыхания, называют коэффициентом окислительного фосфорилирования и обозначают Р/О. Следовательно, для NADH Р/О = 3, для сукцината Р/О - 2.

  1. Ингибиторы, блокирующие дыхательную цепь: барбитураты, ротенон - ингибиторы NADH-дегидрогеназы; антимицин А - ингибитор QH2-дегидрогеназы; СО, H2S, цианид - ингибируют цитохромоксидазу.

1. Разобщители цпэ.

Вещества, которые функционально разделяют между собой окисление и фосфорилирование, называются разобщающими агентами. Они содействуют переносу протонов из межмембранного пространства в матрикс без участия АТФ-синтазы. Разобщение может возникать, например, в результате механического повреждения внутренней мембраны или действия таких веществ, как 2,4-динитрофенол (2), являющихся переносчиками протонов через мембрану. Природным разобщающим агентом является термогенин, протонный канал в митохондриях бурых жировых клеток. Бурый жир обнаружен у новорожденных и животных, впадающих в зимнюю спячку, и служит для теплообразования. При охлаждении организма норадреналин активирует гормонзависимую липазу. Благодаря интенсивному липолизу в организме образуется большое количество свободных жирных кислот, которые распадаются в результате β-окисления и в дыхательной цепи.

Цепь переноса электронов (дыхательная цепь) – это сложная система переносчиков, при участии которой происходит процесс последовательного переноса электронов от НАДН и ФАДН2 на O2. Дыхательной цепи предшествует отнятие атомов водорода от окисляемых субстратов (реакции дегидрирования). Эти реакции относятся к окислительно-восстановительным. Их катализируют ферменты оксидоредуктазы (подкласс: дегидрогеназы).

1. Перенос электронов по ЦПЭ при участии комплексов I, III и IV сопровождается выделением наибольшего количества энергии. Часть этой энергии используется для переноса Н+ из матрикса в межмембранное пространство, в результате чего возрастает протонный электрохимический потенциал ΔμΗ+, основной составляющей которого является протонный градиент.

2. При достижении определенного протонного градиента происходит активация АТФ-синтазы (комплекс V), в ней открывается канал, через который протоны возвращаются в матрикс из межмембранного пространства, а энергия ΔμΗ+ используется для синтеза АТФ.

3. Каждый из трех комплексов ЦПЭ (I, III, IV) обеспечивает необходимый протонный градиент для активации АТФ-синтазы и синтеза одной молекулы АТФ. Количество молекул АТФ, образованных при восстановлении одного атома кислорода до Н2О при прохождении двух электронов по ЦПЭ, эквивалентно количеству использованного фосфата Н3РО4 (Р) и выражается коэффициентом окислительного фосфорилирования (Р/О).

2) Пути обезвреживания аммиака. Механизмы транспорта аммиака в

организме: глутаминовый и глюкозо-аланиновый циклы.

Так как аммиак является чрезвычайно токсичным соединением, то в тканях существуют несколько реакций обезвреживания аммиака – синтез глутаминовой кислоты и глутамина, синтез аспарагина, синтез карбамоилфосфата

1.синтез глутаминовой кислоты (восстановительное аминирование) – взаимодействие α-кетоглутарата с аммиаком. Реакция по сути обратна реакции окислительного дезаминирования, однако в качестве кофермента используется НАДФН. Эта реакция протекает во многих тканях, но наиболее важна для нервной, особенно чувствительной к токсическому действию аммиака

2.Основной реакцией обезвреживания аммиака почти во всех тканях является синтез глутамина под действием глутаминсинтетазы: наиболее активно происходит в нервной и мышечной тканях, в почках, сетчатке глаза, печени. Реакция протекает в митохондриях.

Из тканей глутамин транспортируется в почки и кишечник. В клетках кишечника под действием фермента глутаминазы происходит отщепление амидной группы в виде NH3 а образовавшийся глутамат  превращается в аланин.

3. 4.синтез аспарагина – взаимодействие аспартата с аммиаком. Является второстепенным способом уборки аммиака, энергетически невыгоден, т.к. при этом тратятся 2 макроэргические связи,

5. В мозге и некоторых других органах для обезвреживания аммиака используется реакция восстановительного аминирования α-кетоглутарата под действием глутаматдегидрогеназы

глюкозо-аланиновый циклы. При катаболизме белков в мышцах происходят реакции трансаминирования аминокислот, образуется глутамат, который далее передает аминоазот на пируват и образуется аланин. Из мышц с кровью аланин переносится в печень, где в обратной реакции передает свою аминогруппу на глутамат. Образующийся пируват используется как субстрат в реакциях синтеза глюкозы (глюконеогенез), а глутаминовая кислотадезаминируетсяи аммиак используется в синтезе мочевины.

3) Механизмы индукции и репрессии теломеразной активности.

4)Задача.

В приёмное отделение больницы скорой помощи с коротким

промежутком были доставлены двое мужчин с жалобами на

нарастающую боль за грудиной и резкую общую слабость. Врач

поставил обоим пациентам предварительный диагноз «инфаркт

миокарда». Через 24 часа с момента начала болевого приступа

обоим пациентам определили активность изоформ фермента

креатинкиназы (КК) в сыворотке крови. Результаты в виде

графика приведены ниже.

Соседние файлы в предмете Клиническая биохимия