
- •Билет 1
- •Билет 2
- •Пути обезвреживания аммиака. Механизмы транспорта аммиака в организме: глутаминовый и глюкозо-аланиновый циклы.
- •Билет 3
- •1. Липопротеины очень низкой и низкой плотности: формирование, функции и метаболизм.
- •2. Особенности обмена аминокислот и белков в нервной ткани. Метаболический цикл глутаминовой кислоты.
- •Билет 4
- •Билет 5
- •Билет 6
- •Билет 7
- •1 Комплекс. Надн-КоQ-оксидоредуктаза
- •2 Комплекс. Фад-зависимые дегидрогеназы
- •3 Комплекс. КоQ-цитохром с-оксидоредуктаза
- •4 Комплекс. Цитохром с-кислород-оксидоредуктаза
- •Билет 8
- •Билет 9-1 ????
- •Метаболизм кетоновых тел при голодании
- •Билет 9
- •1. Цикл трикарбоновых кислот (цтк). Биологическая роль.
- •2. Особенности метаболизма в эритроцитах и лейкоцитах.
- •Билет 10
- •1 Схема-
- •2 Схема-
- •3 Этап оу – промежуточный обмен
- •1 Стадия облучения билирубина в коже с образованием люмирубина.
- •2 Стадия. Люмирубин попадает в кровь и выводится с жёлчью и мочой.
- •Билет 11
- •Билет 12
- •1. Этапы аэробного гликолиза
- •Билет 13
- •Билет 14
- •1. Липопротеины высокой плотности: формирование, функции и метаболизм.
- •2. Функции сосудистого эндотелия, субэндотелия и тромбоцитов. Сосудисто-тромбоцитарный гемостаз (первичный).
- •Билет 15
- •1. Переваривание белков в желудочно-кишечном тракте. Биологическое значение переваривания. Схема процесса. Характеристика пищеварительных ферментов.
- •2. Строение и состав мембран. Общие свойства мембран и их функции. Трансмембранный перенос малых молекул. Типы переноса веществ через мембрану. Трансмембранный перенос макромолекул и частиц.
- •Билет 16
- •1. Трансаминирование аминокислот, биологическое значение, субстраты, ферменты, роль витаминов в этом процессе.
- •2. Роль афк в механизме фагоцитоза. Кислородзависимые и кислороднезависимые механизмы фагоцитоза. Роль афк в антимикробной защите грудного молока.
- •Билет 17
- •1. Окислительное дезаминирование (прямое, непрямое) аминокислот. Схема процесса, стадии, ферменты, биологическое значение процесса.
- •2. Гормоны щитовидной железы: химическая природа и структура, этапы биосинтеза.
- •Билет 18
- •1. Декарбоксилирование аминокислот. Биологическое значение. Продукты и их судьба.
- •2. Альдостерон: химическая природа, механизм действия, органы-мишени, биологические эффекты.
- •Билет 19
- •1. Синтез мочевины: схема реакций, суммарное уравнение. Взаимосвязь с цтк. Клиническое значение определения концентрации мочевины в крови и моче, причины повышения и понижения концентрации мочевины.
- •Билет 19 – 2 ????
- •Билет 20
- •1. Катаболизм пуриновых нуклеотидов. Содержание мочевой кислоты в сыворотке крови в норме и причины его повышения. Подагра.
- •2. Инсулин: химическая природа, локализация биосинтеза, схема синтеза, механизм действия, органы-мишени, биологические эффекты.
- •Билет 21
- •1. Схема переваривания пищевых липидов в жкт: этапы, субстраты, ферменты, роль продуктов гидролиза, роль жёлчных кислот.
- •2. Особенности метаболизма и энергетического обмена в клетках поперечно-полосатой мускулатуры и миокарда.
- •Билет 22
- •1. Этапы катаболизма жирных кислот: реакции, ферменты. Энергетический эффект полного окисления с16:0. Регуляция процесса β-окисления вжк.
- •2. Активные формы кислорода (афк). Биологическое действие афк. Ферментативные и неферментативные системы, генерирующие афк.
- •Билет 23
- •1. Анаэробный распад глюкозы (анаэробный гликолиз). Судьба продуктов гликолиза в анаэробных условиях. Биологическое значение анаэробного распада глюкозы. Цикл Кори.
- •Билет 23-2 ???
- •Билет 24
- •1. Биологическое значение и структуры кетоновых тел. Синтез кетоновых тел в печени; регуляция синтеза. Представление о кетонемии, кетонурии и кетоацидозе.
- •2. Биохимические механизмы адаптации к голоданию, типы голодания. Фазы полного голодания. Изменение гормонального статуса и метаболизма при голодании.
- •1. Обмен углеводов
- •2. Обмен жиров
- •Билет 25
- •1. Схема синтеза глицеролфосфолипидов. Особенности строения глицерофосфолипидов в функционировании сурфактанта легкого.
- •2. Кальцитриол: химическая природа, этапы синтеза, механизм действия, органы-мишени, биологические эффекты. Представление о заболевании «рахит».
- •Билет 25-2 ???
- •Билет 26
- •2. Адреналин: химическая природа, механизм действия, органы-мишени, биологические эффекты екты.
- •Билет 27
- •1. Функции клеточного метаболизма. Понятие о процессах катаболизма и анаболизма. Стадии генерирования энергии по Кребсу.
- •2. Ферментативные системы антирадикальной защиты. Катализируемые реакции.
- •Билет 28
- •1. Синтез креатина, креатинфосфата, креатинина. Функции этих соединений в организме.
- •2. Типы переваривания. Функции жкт как пищеварительно-транспортного конвейера. Функции слюны. Функции желчных кислот.
- •Билет 29
- •1. Этапы биосинтеза жирных кислот: реакции, ферменты. Регуляция процесса биосинтеза вжк.
- •2. Гормоны щитовидной железы: химическая природа и структура, этапы биосинтеза.
- •Билет 30
- •1. 1. Пентозо-фосфатный путь (пфп) окисления глюкозы. Биологическое значение.
- •Билет 31
- •Билет 32
- •Билет 33
- •Билет 34 (не точно)-1
- •1. Распад гликогена в печени и скелетных мышцах. Регуляция этих процессов.
- •2. Повреждающее действие первичных и вторичных продуктов пероксидного окисления на мембраны и другие структуры клетки.
- •Билет 34 (не точно)-2
- •Билет 35
- •1. Классификация лп. Структура и состав липопротеидных частиц. Апобелки и их функции. Ферменты, участвующие в метаболизме лп. Индекс атерогенности.
- •2. Биологическая роль печени в регуляции углеводного обмена. Обмен фруктозы и галактозы.
- •2. Роль печени в пигментном обмене. Виды желтух и причины их возникновения. Физиологическая желтуха новорожденных.
- •Билет 36
- •1. Структура и функции холестерина в организме человека. Фонд, пути использования в организме и выведения холестерина. Биосинтез холестерина, метаболическая и гормональная регуляция.
- •2. Предсердный натрийуретический фактор (пнф): химическая природа, механизм действия, органы-мишени, биологические эффекты.
- •Билет 37
- •1 Комплекс. Надн-КоQ-оксидоредуктаза
- •2 Комплекс. Фад-зависимые дегидрогеназы
- •3 Комплекс. КоQ-цитохром с-оксидоредуктаза
- •4 Комплекс. Цитохром с-кислород-оксидоредуктаза
- •1. Разобщители цпэ.
- •Билет 38
- •Билет 39
- •1. Этапы аэробного гликолиза
- •Билет 40
- •Билет 41 ???
- •Билет 42
1. Обмен углеводов
основным источником глюкозы при длительном голодании служит глюконеогенез, а основными субстратами глюконеогенеза - аминокислоты, лактат и глицерол. Обеспечение энергетических потребностей других тканей происходит за счёт жирных кислот и кетоновых тел.
2. Обмен жиров
Жирные кислоты, образующиеся в процессе мобилизации жиров в жировых депо, становятся основными источниками энергии для большинства органов в первый период голодания. Во II фазе голодания скорость синтеза кетоновых тел значительно возрастает. Концентрация кетоновых тел в крови в этот период может достигать 20-30 мг/дл (в норме 1-3 мг/дл). Используются кетоновые тела, в основном, в мышцах. В этот период голодания часть энергетических потребностей мозга обеспечивается кетоновыми телами, а скорость окисления кетоновых тел в мышцах снижается.
3. Танкираза: роль в образовании активной теломеразы. Вопрос: что это такое?
Задача:
У больного наблюдается желтушность кожных покровов и склер, головокружение. Селезёнка увеличена. Анализ крови: эритроциты – 2,6×1012/л; ретикулоциты – 18%; общий билирубин – 65 мкмоль/л; прямая фракция – 2 мкмоль/л. О каком нарушении пигментного обмена свидетельствует данный анализ? Каковы возможные причины развития такого состояния?
Ответ:
У пациента совокупности приведённых признаков повышен распад эритроцитов (гемолиз), что привело к избыточному образованию неконъюгированного билирубина, вызвавшего желтушную окраску кожи и слизистых оболочек. Состояние называется гемолитическая желтуха. Причиной гемолитической желтухи может быть любой фактор, приводящий к гемолизу: наследственные дефекты структуры и ферментного аппарата эритроцитов, отравления гемолитическими ядами, переливание несовместимой крови и т.д.
Билет 25
1. Схема синтеза глицеролфосфолипидов. Особенности строения глицерофосфолипидов в функционировании сурфактанта легкого.
Глицерофосфолипиды являются производными фосфатидной кислоты. В их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения. Начальные этапы синтеза глицерофосфолипидов и жиров происходят одинаково до образования фосфатидной кислоты. Фосфатидная кислота может синтезироваться двумя разными путями: через глицеральдегид-3-фосфат и через дигидроксиацетонфосфат (рис. 8-57). R1 - радикал насыщенной жирной кислоты; R2 - радикал полиеновой жирной кислоты; SAM - S-аденозилметионин.
|
На следующем этапе фосфатидаза отщепляет от фосфатидной кислоты фосфатный остаток, в результате чего образуется диацилглицерол. Дальнейшие превращения диацилглицерола также могут идти разными путями. Один из вариантов - образование активной формы "полярной головки" фосфолипида: холин, серии или этаноламин превращаются в ЦДФ-холин, ЦДФ-серин или ЦДФ-этаноламин.
Далее диацилглицерол взаимодействует с ЦМФ-производными, при этом выделяется ЦМФ, и образуется соответствующий фосфолигщц, например фосфатидилхолин. Между глицерофосфолипидами возможны различные взаимопревращения. Фосфатидилхолин может образовываться и другим путём: из фосфатидилэтаноламина, получая последовательно 3 метальные группы от SAM. Фосфатидилсерин может превращаться в фосфа-тидилэтаноламин путём декарбоксилирования. Фосфатидилэтаноламин может превращаться в фосфатидилсерин путём обмена этаноламина на серии.
Сурфактант - внеклеточный липидный слой с небольшим количеством гидрофобных белков, выстилающий поверхность лёгочных альвеол и предотвращающий слипание стенок альвеол во время выдоха . Основной компонент сурфактанта - лецитина, составляющий до 80% от всех фосфолипидов, входящих в состав сурфактанта. Кроме того, в сурфактант входят гидрофобные белки, общее количество которых не превышает 10-20%. Лецитин является одним из главных составляющих легочного сурфактанта — вещества, которым легкие человека покрыты изнутри. Основное его назначение – препятствовать слипанию легкого при вдохе и выдохе. После перенесенных легочных заболеваний (пневмонии, бронхита), хирургических вмешательств именно лецитин восстанавливает легочный сурфактант.
Синтез лецитина в пневмоцитах II типа происходит в процессе эмбрионального развития и резко увеличивается в период от 32 до 36 нед беременности.
Недостаточное формирование сурфактанта у недоношенных детей после рождения приводит к развитию респираторного дистресс-синдрома - основной причины смерти у этой группы новорождённых. В случае необходимости лечение беременных кортикостерридами стимулирует синтез сурфактанта