
- •1. Electrostatic field. Coulomb’s law. Gauss law (Электростатическое поле. Закон Кулона. Закон Гаусса)
- •Variables and units
- •Coulomb’s Law. (ЗаконКулона)
- •Electric Field Strength e and Displacement Field d. (Напряжённостьисмещениеэлектрическогополя)
- •Gauss’ Law. (ЗаконГаусса)
- •2. Poisson’s and Laplace’s equations for the potential of electric field (Уравнения Пуассона и Лапласа для потенциала электрического поля) Electric Potential. (Электрический потенциал)
- •Poisson’s and Laplace’ s equations. (Уравнения Пуассона и Лапласа)
- •3. Electrostatic Energy (Электростатическая энергия) Electrostatic Energy (Электростатическаяэнергия)
- •Virtual experiment. (Эксперимент по нахождению энергии системы)
- •Consequences (Следствия)
- •4. Power and Joule’s Law (Энергия и закон Джоуля-Ленца)
- •5. Continuity Equation (Уравнения непрерывности) ContinuityEquation (Уравнение непрерывности)
- •Image method for the flat boundary between magnetic media (Метод изображений для плоской границы между магнитными носителями)
- •8. Static magnetic field. Biot–Savart’s Law. Ampere’s Law (Статическое магнитное поле. Закон Био–Савара. Закон Ампера)
- •Variables and units (Переменные и единицы измерения)
- •Main Relations (Основные соотношения)
- •Magnetic flux density (Индукция магнитного поля)
- •Biot-Savart’s law (Закон Био-Савара)
- •Ampere’s law (Закон полного тока)
- •The cut in the space (Разрез в пространстве)
- •Laplace equation for the scalar magnetic potential (Уравнение Лапласа для скалярного магнитного потенциала)
- •10. Vector magnetic potential. Inductance (Векторный магнитный потенциал. Индуктивность)
- •Vector magnetic potential (Векторный магнитный потенциал)
- •Magnetic flux (Магнитный поток)
- •Differential equation for the vector magnetic potential (Дифференциальное уравнение для векторного магнитного потенциала)
- •Gauging of the vector magnetic potential (Калибровка векторного магнитного потенциала)
- •Integral presentation of the vector magnetic potential (Интегральное представление векторного потенциала)
- •Inductance (Индуктивность)
- •Mutual inductance (Взаимная индуктивность)
- •Inductance of thin contours (Индуктивность тонких контуров)
- •12. Internal inductance of a thin conductor (Внутренняя индуктивность тонкого проводника) Flux linkage of a thin current layer (Потокосцепление тонкого слоя с током)
- •Internal inductance of a thin conductor (Внутренняя индуктивность тонкого проводника)
- •13. Inductance of a two wire transmission line (Индуктивность двухпроводной линии).
- •14. Variable separation method in a cylindrical coordinate system (Метод разделения переменных в цилиндрической системе координат). Application of Laplace’s equation (Применение уравнения Лапласа).
- •Angular function (Угловая функция)
- •Radial function (Радиальная функция)
- •General solution of the Laplace’s equation in a cylindrical coordinate system (Общее решение уравнения Лапласа в цилиндрической системе координат)
- •15. The Faraday’s law (Закон электромагнитной индукции).
- •Lenz’s Law (правило Ленца)
- •Induction by a temporal change of b (Индукция за счёт временного изменения b)
- •16. Induction through the motion of a conductor (Индукция за счет движения проводника).
- •17. Induction by simultaneous temporal change of b and motion of the conductor (Индукция одновременным изменением b во времени и движением проводника).
- •18. Unipolar generator (Униполярный генератор).
- •19. Hering’s paradox (Парадокс Геринга)
- •20. Diffusion of magnetic fields into conductors (Распространение электромагнитного поля в проводнике)
- •21. Periodic electromagnetic fields in conductors. (Периодическое электромагнитное поле в проводниках)
- •Penetration of the electromagnetic field into a conductor. (Проникновение электромагнитного поля в проводник)
- •The skin effect. (Скин-эффект)
- •22. Poynting theorem. (Теорема Пойнтинга) Electromagnetic Field Energy. (Энергия электромагнитного поля)
- •The rate of decrease of the electromagnetic field energy in a closed volume. (Скорость уменьшения энергии электромагнитного поля в замкнутом объёме)
- •Transmission of energy in a dc line (Передача энергии в линиях постоянного тока)
- •The field picture near the wires with current (Картина поля вблизи провода с током)
- •25. Energy flows in static electric and magnetic fields (Поток энергии в статических электрических и магнитных полях).
- •26. The reduced magnetic potential (Редуцированный магнитный потенциал). Reduced scalar magnetic potential (Редуцированный скалярный магнитный потенциал)
- •Combination of scalar magnetic potential and reduced magnetic potential (Комбинация скалярного магнитного потенциала и редуцированного магнитного потенциала)
- •27. Classification of numerical methods of the electromagnetic field modeling (Классификация численных методов моделирования электромагнитного поля).
- •Classification of the problems (Классификация проблем)
- •Classification of the methods (Классификация методов)
- •28. Method of moments
- •Discretization of the problem domain (Дискретизация проблемной области)
- •29. Basic principles of the finite element method.
- •30. Finite functions (Ограниченная функция – отлична от нуля только в пределах треугольника)
- •Simplex coordinates
- •Approximation of functions inside triangles (Аппроксимация функций внутри треугольника)
- •Approximation of the equation (Аппроксимация уравнения)
- •31. Weighted residual method (метод взвешенных невязок)
- •32. Weak formulation of the electromagnetic field modeling problem
- •33. Boundary conditions in electric and magnetic fields
- •1) First type boundary conditions
- •34. Main equations of electromagnetic field in integral form.
- •35. Main equations of electromagnetic field in differential form.
- •36. Electric field of a point charge (Электрическое поле точечного заряда)
- •37. Electric field of a uniformly charged sphere (Электрическое поле равномерно заряженной сферы)
- •38. Flat capacitor. Field. Surface charge. Capacity. (Плоский конденсатор. Поле. Поверхностный заряд. Вместимость.)
- •39.2 Inductance of a cylindrical coil with the rectangular cross section(Индуктивность цилиндрической катушки прямоугольного сечения).
- •4 0.1 Electric field induced by charged line placed above conducting surface (Электрическое поле, создаваемое заряженной линией, помещенной над проводящей поверхностью).
- •4 0.2. Magnetic field induced by the line with a current placed above a ferromagnetic surface with infinitely high magnetic permeability
4. Power and Joule’s Law (Энергия и закон Джоуля-Ленца)
The Joule’s Law is a physical law that gives a quantitative assessment of the thermal effect of an electric current.
Consider a charge Q moves at a velocity v by an electric field E to a distance l. In this case, the expression of the work done is:
Power is the energy, which dissipated or consumed or generated over time unit:
,
where Q – total charge:
So
– Joule's law in differential form
For a constant cross-section conductor, the expression of the volume is:
– Joule's law in integral form
5. Continuity Equation (Уравнения непрерывности) ContinuityEquation (Уравнение непрерывности)
Consider a closed surface, where a wire carries a current Iin in the surface and the current Iout goes out from the surface.
General definitions:
Gausstheorem (которая Остроградского-Гаусса):
And we can conclude continuity
equation:
for steady (постоянные)
currents (charge is constant)
It is a differential form. It is one of the important laws in circuit theory. The current, which crosses some closed area, is equal to zero. It is the 1-st Kirchhoff's law.
But we may have
,
it is true only in time depending fields. But the 1-st Kirchhoff's
law is valid both in steady currents, and in time depending currents.
So, we have some contradiction or not?
Let's look at this with more attention.
J is the current of conductivity.
If displacement current is taken into account
δ – total current density.
,
The Gauss Law for the field displacement
Time derivative:
continuity equation:
or
(differential and integral forms and it is the really the 1-st Kirchhoff's law)
Болееподробно:
and
Divergence of delta is equal to zero always and independently.
Continuity equation take place in any kind of system, but we can say that for conductivity current it is now always case, because in principle if our volume (object) accumulates (накапливает) current, then this divergence of J will not be equal to zero.
6. Electric field induced by the charged wire placed above the flat boundary between two different dielectrics (Электрическое поле, индуцируемое заряженным проводом, расположенным над плоской границей между двумя различными диэлектриками)
There are 2 half-spaces with different permittivity ε1 and ε2 and the point that corresponds to the infinitely long charged line with the linear charge density τ. This charged line suspended above this surface at the high h. We need to find the field intensity distribution everywhere in the space in both sub-spaces (above the interface and below the partition boundary.
The electrostatic problem is described by the Poisson and Laplace equations. This equation has a unique solution in the case when we have defined proper boundary conditions. This may be definition of the potential at the border of the considered space; or normal derivative of the electric potential or intensity of the electric field because the normal derivative of the potential is really the normal component of the electric field intensity or if the medium has the constant dielectric permittivity, then it is identical to the case when we shall define a normal component of the field displacement.
– the field induced by
charged line source. This expression works only in the case when
there are no surfaces. There is only one space with one dielectric
permittivity is everywhere the same.
Let's suppose that the electric field in the upper
half-space above the interface may be calculated as the superposition
of two electric field. The first of them induced by initial wire
itself and second of them induced by another wire, which is placed
under the surface and which has a charge density
1.
Dielectric constant is the same in both
half-spaces ε1.
Let us place the image into the point of
.
Charge density of the image is
1.
So we can find field intensity in the boundaries:
Let’s suppose that the dielectric permittivity of the whole space is ε2. Now there should not be any charge in the lower space. But above the surface there will be a charge with unknown density 2. This charge, which is placed above the surface at the distance h. Field intensity at the boundaries:
Boundary conditions are:
Boundary conditions for horizontal component of the field intensity:
In the upper half-space:
In the lower half-space:
First relation:
or
Boundary conditions for vertical component of the field intensity:
In the upper half-space
In the lower half-space
Second relation:
Combining with the first relation:
If the boundary conditions are satisfied then the solution is unique one. There are no other solutions. That is why such mirror reflection is the only one possible.
7. Magnetic field induced by the wire with a current placed above the flat boundary between two media with different magnetic permeabilities (Магнитное поле, индуцируемое проводом с током, расположенным над плоской границей между двумя средами с разной магнитной проницаемостью)