Скачиваний:
14
Добавлен:
14.06.2022
Размер:
869.89 Кб
Скачать

Advanced chapters of theoretical electroengineering.

SPbTU, IE, Prof. A.G. Kalimov 2022

1

Lecture 6

Time dependent fields

Gunther Lehner

Electromagnetic Field Theory for Engineers and Physicists

2

Faraday’s Law

Закон электромагнитной индукции

The Faraday’s Law is based on Maxwell equations.

The main idea of this law is:

changing in time magnetic field induces the electric field.

The origin of the induced voltage:

time varying magnetic fields;

moving of the coil in stationary magnetic field

Lenz's law (правило Ленца) climes that the electric field induced in a circuit due to a change in a magnetic field is directed to oppose the change of the flux.

3

Induction by a temporal change of B

Consider a time dependent magnetic field described by the magnetic flux density or also called the magnetic induction and a contour l, fixed in space.

The Maxwell equation states that a time-varying magnetic field always accompanies a spatially varying (also possibly time-varying), non-conservative electric field:

B curlE t

The magnetic flux:

B ds

 

 

 

 

 

 

s

 

 

 

 

 

 

 

B

 

 

 

 

Edl

curlE

dS

 

dS

 

 

 

 

S

 

 

S t

 

 

t

 

 

U

 

- electromotive force (EMF) or voltage

 

 

t

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Induction through the motion of the conductor.

Inside the magnetic field the force is:

 

 

 

F Q v B

The same effect is produced by the electric field:

F Q E

This effect may be explained by assuming

 

 

E v B

 

Moving a thin conducting contour in static magnetic field we shall get:

E dl

v B dl B v dl

 

a b c c a b c b a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

l

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

Displacement vector covers the area during the time period of Δt

dS v dl dt

dl v dt

5

Induction through the motion of the conductor.

The EMF induced in the contour:

 

 

 

dS

 

d

 

 

 

d

U E

dl

B

dt

dt

B

dS

dt

l

 

l

 

 

l

 

 

The magnetic field distribution does not depend on time!

If the conductor is not closed

E v B

If the last 3 vectors are normal to each others than

U v B l

6

Induction through the motion of the conductor.

If the contour moves in the uniform magnetic field no EMF is induced because of mutual canceling of partial electromotive forces:

If only one side moves, than

Uv B l

Bla(t) Bl a0 vt

U d v B l dt

7

Induction through the motion of the conductor.

During this important process of energy transformation, mechanical energy is transformed into electrical energy.

Consider a frame rotating in the uniform magnetic field

If ω is the angular velocity, then the flux encompassed during the time period t is

B a l cos t

U d B a l sin t dt

This is the principle of alternating current generators.

8

Induction by simultaneous temporal change of B and motion of the conductor.

The two effects discussed above can also occur simultaneously and in such case need to be added.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

E dl

 

t

B dS

B v dS

 

 

 

E

dl

dt

 

l

 

 

 

 

S

 

l

 

 

 

 

 

 

 

 

l

 

 

 

Using the vector magnetic potential:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E dl

t

 

A dS

v B dl

 

 

 

 

 

 

l

 

 

 

S

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

A dS

v B dS (the Gauss theorem for curl of vector)

 

 

S

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

B

 

dS 0

 

 

 

 

 

 

 

 

 

or:

 

 

 

 

v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

9

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

Induction by simultaneous temporal change of B and motion of the conductor.

The last expression is true for any surface so:

 

 

A

 

 

 

 

 

E

 

v

B

 

0

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introducing a suitable scalar

 

A

 

 

 

 

 

A

 

 

function φ, we may write

E

t

v

B

 

E

 

t

v

B

The field intensity E here

is the one which an

 

 

 

 

 

observer would “see” when moving with the conductor.

An observer at rest then sees the field

 

 

A

E

 

 

 

t

10