Скачиваний:
14
Добавлен:
14.06.2022
Размер:
869.89 Кб
Скачать

Unipolar generator.

(Униполярный генератор)

Consider the wheel made of conductive material rotating with a constant angular frequency ω in a uniform magnetic field.

Two brushes provide connectivity between the stationary outside part of the circuit that includes a voltmeter and the rotating part inside.

The result of this closed circuit is an induced EMF

11

Unipolar generator.

Velocity is a function of the

v r

 

distance to the center.

 

 

Electric field intensity:

E B r

 

 

 

0

Br02

 

 

 

 

2

 

U E dr

Er dr

 

 

 

 

r0

 

 

The flux passing through the contour is constant!

0

12

Unipolar generator.

Another consideration may take place.

The circuit shown here is also a possibility.

The magnetic flux in this case is:

 

 

r2

B

r2 t

B

 

 

 

 

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

2

 

The induced EMF is:

 

U

d

 

 

r

B

 

dt

 

0

 

 

2

 

However, this explanation is not very persuasive.

What is always true:

 

B

Using the flux in this certain

E v

situation makes no sense.

 

 

 

13

Hering’s paradox. (Парадокс Геринга)

Consider a magnet without leakage. It has an air gap that is penetrated by a magnetic field.

Outside the magnet, there is a conducting loop with elastic contacts that ensure a closed circuit at all times. The circuit also includes a voltmeter

Movement of the coil causes a voltage impulse

Udt

 

The loop is

Finally, the loop is

further moved to

pulled from the

a new position

magnet to the outside

14

Hering’s paradox.

0

0

The spring contacts open, but stay in contact with the magnet, so the circuit is still closed at all times

Experiment demonstrated – there is no induced EMF.

This may appear like a paradox which represents a contradiction to Faraday’s Law. Essential is, however, that the flux change is not related to the motion of the conductor.

 

Inside the magnet: field exists but there is no movement

E v B

Outside the magnet: conductor moves, but there is no field.

15

Diffusion of electromagnetic fields.

Consider electromagnetic field in conductor.

The displacement currents are neglected. No free charges.

 

B

divB 0

B H

curlE

Basic equations:

t

divJ 0

J E

curlH J

E

divE 0

 

 

 

 

Differential equations for the electric field intensity:

 

 

 

 

 

 

 

 

 

 

E

B

 

H

J

E

t

 

t

t

t

 

 

 

 

 

 

 

Mathematical

 

 

 

 

 

 

2

 

2

E

transformation:

 

 

E E E

 

 

 

 

 

 

 

 

 

 

16

Diffusion of electromagnetic fields.

Diffusion equations for the electromagnetic field characteristics:

2

E

2

 

J

2

B

2

H

2

 

A

E

t

J

 

t

B

t

H

t

 

A

t

Such equations (applied to scalar variables) describe processes of the particle diffusion, thermal processes.

One-dimensional equations: (here we assume that only x- component of the E and y- component of H exist)

2 E

x

E

x

z2

t

 

 

 

 

2 H y

 

 

H y

 

 

z2

 

t

 

 

 

 

17

Periodic electromagnetic field in the conductors.

Quasi-stationary approach:

Ex Em sin( t E ); H y Hm sin( t H )

Applying the complex method:

 

j E

;

 

j H

Em Eme

Hm Hme

 

 

Differential equations in complex form:

2

 

 

d

2

 

 

 

 

 

 

 

E

m

 

 

 

d Hm

 

 

 

 

 

 

 

dHm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j E

 

 

 

dz2

j Hm

dz

2

 

m

Em

dz

 

 

 

 

 

 

18

Periodic electromagnetic field in the conductors.

 

 

d

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation:

 

Hm

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dz2

 

j Hm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution for the complex field intensity:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

z

 

 

 

 

 

z

 

 

 

 

 

 

 

Hm A1e

 

 

 

A2e

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hm A1e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter α:

 

 

 

 

 

 

 

 

e j

2 e j 4

 

1 j

 

 

 

 

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using designation:

 

 

 

 

k

 

 

 

 

 

 

 

kz

e

jkz

 

 

 

 

2

 

 

 

 

 

 

 

Hm Hm0e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution for the field intensity:

H Hm0e kz sin( t H0

kz)

19

Penetration of the electromagnetic field into a conductor

1

 

 

2

 

- the penetration length

 

k

 

 

 

 

Amplitude of the electromagnetic wave dumps according to exponential dependence:

H Hm0e kz sin( t H0 kz 4 )

20