Скачиваний:
15
Добавлен:
14.06.2022
Размер:
785.92 Кб
Скачать

Advanced chapters of theoretical electro-engineering. Lecture 2

1

Poisson’s and Laplace’ s equations.

E U

In the absence of free charges D 0

 

D E

 

For the linear dielectric const

U 0

2

 

U 0

 

 

 

Laplace’s equation

In general case

For the linear dielectric

U

U

Poisson’s equation

2

Boundary conditions for the Laplace or Poisson Equations

Laplace’s (Poisson’s) equation has unique solution:

1-st type boundary conditions

U F1

 

(Dirichlet boundary conditions)

U 0

 

 

2-nd type boundary conditions (Neumann boundary conditions)

U F2n

3-rd type boundary conditions

U

U F3

 

n

 

3

Electrostatic Energy.

The force in the electric field

 

 

F Q E

 

 

 

b

 

 

b

 

 

 

 

b

 

 

The work

A

 

dl

 

 

 

 

 

 

 

 

 

F

Q E dl

Q

E dl

 

 

a

 

 

a

 

 

 

 

 

a

 

 

 

 

 

 

 

b

 

 

 

A

 

 

 

 

 

The potential difference

 

 

Ua Ub E

dl

 

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

a

 

 

 

 

 

For infinitely remote point a

 

 

Ua 0

 

Ub

 

A

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The work is done by the electric field without any external force

Energy conservation law

 

 

A W 0

 

A W

 

So we have got Wb Q U

4

Electrostatic Energy.

Consider three points P1, P2, and P3 in a charge- free space. The point charges Q1,Q2, and Q3 are brought from infinity to those points, respectively.

WE W1 W2 W3

No work is done in bringing point charge Q1 from infinity to point P1

WE 0 W2 W3 or

WE 0 Q2U21 Q3 U31 U32

U21 is the potential at point P2 due to Q1,

U31 is the potential at point P3 due to Q1,

U32 is the potential at point P3 due to Q2.

5

Electrostatic Energy.

Placing the point charges in the reverse order:

WE 0 Q2U23 Q1 U12 U13

Adding the equations we shall get

2WE Q1 U12 U13 Q2 U21 U23 Q3 U31 U32

or

2WE Q1U1 Q2U2 Q3U3

 

WE 1

Q1U1 Q2U2 Q3U3

 

2

 

6

Electrostatic Energy.

 

WE 1

N

In general case:

QnUn

 

2 n 1

If the charges are distributed over the space

W

2 V

 

1

UdV

for the space charges

E

 

 

 

2

S

 

WE 1

UdS for the surface charges

W

2

l

 

1

Udl

for the line charges

E

 

 

7

Electrostatic Energy.

Substituting in the expression for the

 

 

divD

energy of charges distributed in the volume:

 

 

1

 

 

 

 

 

 

 

1

 

 

 

W

2 V

 

 

W

 

2 V

 

 

 

 

 

UdV

 

DUdV

 

E

 

 

 

 

 

 

E

 

 

 

 

 

 

UD U D D U

 

U D UD D U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WE 1 UD D

U dV

 

 

 

 

 

 

2 V

 

 

 

 

 

 

UD dV UDdS

Applying the Gauss theorem to the first term:

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

V

 

 

S

R

U

~

 

 

D ~

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

R

 

R2

 

 

U D ~

 

 

 

 

 

 

R3

8

Electrostatic Energy.

Area of a spherical surface

 

 

 

 

S 4 R2

 

 

 

 

 

 

 

Energy:

 

 

2 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WE 1

 

UD D U dV

 

 

 

 

 

 

 

R D ~

1

U

~

1

 

 

 

 

~

1

R

2

0

R

2

R

 

 

UDdS

R

3

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

W

2 V

 

Finally we get:

1

D EdV

E

 

 

 

 

 

 

 

 

9

Volume energy density.

 

 

 

 

 

 

 

W

 

2 V

 

Total energy:

E

1

D EdV

 

 

 

 

 

 

 

Energy per unit volume:

dWE

WE D E

 

dV

2

For isotropic medium:

D E

WE

E

2

 

[J/m3]

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

10

Соседние файлы в папке Лекции+экзамен